增加Redis查询比对

This commit is contained in:
2025-08-04 09:14:27 +08:00
parent e1a566012d
commit 4c4d168471
18 changed files with 8007 additions and 2250 deletions

17
modules/__init__.py Normal file
View File

@@ -0,0 +1,17 @@
"""
BigDataTool Modules
This directory contains all functional modules for the BigDataTool application.
Module List:
- database.py - Database management
- query_logger.py - Query logging management
- sharding.py - Sharding calculations
- cassandra_client.py - Cassandra connections
- query_engine.py - Data query engine
- data_comparison.py - Data comparison algorithms
- config_manager.py - Configuration management
- api_routes.py - API route definitions
Each module has clear responsibility boundaries and standardized interfaces.
"""

1020
modules/api_routes.py Normal file

File diff suppressed because it is too large Load Diff

114
modules/cassandra_client.py Normal file
View File

@@ -0,0 +1,114 @@
"""
Cassandra连接管理模块
负责Cassandra数据库的连接和错误诊断
"""
import time
import logging
from cassandra.cluster import Cluster
from cassandra.auth import PlainTextAuthProvider
from cassandra.policies import DCAwareRoundRobinPolicy
logger = logging.getLogger(__name__)
def create_connection(config):
"""创建Cassandra连接带有增强的错误诊断和容错机制"""
start_time = time.time()
logger.info(f"=== 开始创建Cassandra连接 ===")
logger.info(f"主机列表: {config.get('hosts', [])}")
logger.info(f"端口: {config.get('port', 9042)}")
logger.info(f"用户名: {config.get('username', 'N/A')}")
logger.info(f"Keyspace: {config.get('keyspace', 'N/A')}")
try:
logger.info("正在创建认证提供者...")
auth_provider = PlainTextAuthProvider(username=config['username'], password=config['password'])
logger.info("正在创建集群连接...")
# 设置负载均衡策略,避免单点故障
load_balancing_policy = DCAwareRoundRobinPolicy(local_dc=config.get('datacenter', 'dc1'))
# 创建连接配置,增加容错参数
cluster = Cluster(
config['hosts'],
port=config['port'],
auth_provider=auth_provider,
load_balancing_policy=load_balancing_policy,
# 增加容错配置
protocol_version=4, # 使用稳定的协议版本
connect_timeout=15, # 连接超时
control_connection_timeout=15, # 控制连接超时
max_schema_agreement_wait=30 # schema同步等待时间
)
logger.info("正在连接到Keyspace...")
session = cluster.connect(config['keyspace'])
# 设置session级别的容错参数
session.default_timeout = 30 # 查询超时时间
connection_time = time.time() - start_time
logger.info(f"✅ Cassandra连接成功: 连接时间={connection_time:.3f}")
# 记录集群状态
try:
cluster_name = cluster.metadata.cluster_name or "Unknown"
logger.info(f" 集群名称: {cluster_name}")
# 记录可用主机状态
live_hosts = [str(host.address) for host in cluster.metadata.all_hosts() if host.is_up]
down_hosts = [str(host.address) for host in cluster.metadata.all_hosts() if not host.is_up]
logger.info(f" 可用节点: {live_hosts} ({len(live_hosts)}个)")
if down_hosts:
logger.warning(f" 故障节点: {down_hosts} ({len(down_hosts)}个)")
except Exception as meta_error:
logger.warning(f"无法获取集群元数据: {meta_error}")
return cluster, session
except Exception as e:
connection_time = time.time() - start_time
error_msg = str(e)
logger.error(f"❌ Cassandra连接失败: 连接时间={connection_time:.3f}")
logger.error(f"错误类型: {type(e).__name__}")
logger.error(f"错误详情: {error_msg}")
# 提供详细的诊断信息
if "connection refused" in error_msg.lower() or "unable to connect" in error_msg.lower():
logger.error("❌ 诊断无法连接到Cassandra服务器")
logger.error("🔧 建议检查:")
logger.error(" 1. Cassandra服务是否启动")
logger.error(" 2. 主机地址和端口是否正确")
logger.error(" 3. 网络防火墙是否阻挡连接")
elif "timeout" in error_msg.lower():
logger.error("❌ 诊断:连接超时")
logger.error("🔧 建议检查:")
logger.error(" 1. 网络延迟是否过高")
logger.error(" 2. Cassandra服务器负载是否过高")
logger.error(" 3. 增加连接超时时间")
elif "authentication" in error_msg.lower() or "unauthorized" in error_msg.lower():
logger.error("❌ 诊断:认证失败")
logger.error("🔧 建议检查:")
logger.error(" 1. 用户名和密码是否正确")
logger.error(" 2. 用户是否有访问该keyspace的权限")
elif "keyspace" in error_msg.lower():
logger.error("❌ 诊断Keyspace不存在")
logger.error("🔧 建议检查:")
logger.error(" 1. Keyspace名称是否正确")
logger.error(" 2. Keyspace是否已创建")
else:
logger.error("❌ 诊断:未知连接错误")
logger.error("🔧 建议:")
logger.error(" 1. 检查所有连接参数")
logger.error(" 2. 查看Cassandra服务器日志")
logger.error(" 3. 测试网络连通性")
return None, None

671
modules/config_manager.py Normal file
View File

@@ -0,0 +1,671 @@
"""
配置管理模块
负责配置组和查询历史的CRUD操作
"""
import json
import logging
from datetime import datetime
from .database import ensure_database, get_db_connection
logger = logging.getLogger(__name__)
# 默认配置(不显示敏感信息)
DEFAULT_CONFIG = {
'pro_config': {
'cluster_name': '',
'hosts': [],
'port': 9042,
'datacenter': '',
'username': '',
'password': '',
'keyspace': '',
'table': ''
},
'test_config': {
'cluster_name': '',
'hosts': [],
'port': 9042,
'datacenter': '',
'username': '',
'password': '',
'keyspace': '',
'table': ''
},
'keys': [],
'fields_to_compare': [],
'exclude_fields': []
}
# Redis默认配置
REDIS_DEFAULT_CONFIG = {
'cluster1_config': {
'name': '生产集群',
'nodes': [
{'host': '127.0.0.1', 'port': 7000}
],
'password': '',
'socket_timeout': 3,
'socket_connect_timeout': 3,
'max_connections_per_node': 16
},
'cluster2_config': {
'name': '测试集群',
'nodes': [
{'host': '127.0.0.1', 'port': 7001}
],
'password': '',
'socket_timeout': 3,
'socket_connect_timeout': 3,
'max_connections_per_node': 16
},
'query_options': {
'mode': 'random',
'count': 100,
'pattern': '*',
'source_cluster': 'cluster2',
'keys': []
}
}
def save_redis_config_group(name, description, cluster1_config, cluster2_config, query_options):
"""保存Redis配置组"""
if not ensure_database():
logger.error("数据库初始化失败")
return False
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
INSERT OR REPLACE INTO redis_config_groups
(name, description, cluster1_config, cluster2_config, query_options, updated_at)
VALUES (?, ?, ?, ?, ?, ?)
''', (
name, description,
json.dumps(cluster1_config),
json.dumps(cluster2_config),
json.dumps(query_options),
datetime.now().isoformat()
))
conn.commit()
logger.info(f"Redis配置组 '{name}' 保存成功")
return True
except Exception as e:
logger.error(f"保存Redis配置组失败: {e}")
return False
finally:
conn.close()
def get_redis_config_groups():
"""获取所有Redis配置组"""
if not ensure_database():
logger.error("数据库初始化失败")
return []
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
SELECT id, name, description, created_at, updated_at
FROM redis_config_groups
ORDER BY updated_at DESC
''')
rows = cursor.fetchall()
config_groups = []
for row in rows:
config_groups.append({
'id': row['id'],
'name': row['name'],
'description': row['description'],
'created_at': row['created_at'],
'updated_at': row['updated_at']
})
return config_groups
except Exception as e:
logger.error(f"获取Redis配置组失败: {e}")
return []
finally:
conn.close()
def get_redis_config_group_by_id(group_id):
"""根据ID获取Redis配置组详情"""
if not ensure_database():
logger.error("数据库初始化失败")
return None
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
SELECT id, name, description, cluster1_config, cluster2_config, query_options,
created_at, updated_at
FROM redis_config_groups WHERE id = ?
''', (group_id,))
row = cursor.fetchone()
if row:
config = {
'id': row['id'],
'name': row['name'],
'description': row['description'],
'cluster1_config': json.loads(row['cluster1_config']),
'cluster2_config': json.loads(row['cluster2_config']),
'query_options': json.loads(row['query_options']),
'created_at': row['created_at'],
'updated_at': row['updated_at']
}
return config
return None
except Exception as e:
logger.error(f"获取Redis配置组详情失败: {e}")
return None
finally:
conn.close()
def delete_redis_config_group(group_id):
"""删除Redis配置组"""
if not ensure_database():
logger.error("数据库初始化失败")
return False
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('DELETE FROM redis_config_groups WHERE id = ?', (group_id,))
conn.commit()
success = cursor.rowcount > 0
if success:
logger.info(f"Redis配置组ID {group_id} 删除成功")
return success
except Exception as e:
logger.error(f"删除Redis配置组失败: {e}")
return False
finally:
conn.close()
def save_redis_query_history(name, description, cluster1_config, cluster2_config, query_options,
query_keys, results_summary, execution_time, total_keys,
different_count, identical_count, missing_count, raw_results=None):
"""保存Redis查询历史记录返回历史记录ID"""
if not ensure_database():
logger.error("数据库初始化失败")
return None
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
INSERT INTO redis_query_history
(name, description, cluster1_config, cluster2_config, query_options, query_keys,
results_summary, execution_time, total_keys, different_count, identical_count,
missing_count, raw_results)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
name, description,
json.dumps(cluster1_config),
json.dumps(cluster2_config),
json.dumps(query_options),
json.dumps(query_keys),
json.dumps(results_summary),
execution_time,
total_keys,
different_count,
identical_count,
missing_count,
json.dumps(raw_results) if raw_results else None
))
# 获取插入记录的ID
history_id = cursor.lastrowid
conn.commit()
logger.info(f"Redis查询历史记录 '{name}' 保存成功ID{history_id}")
return history_id
except Exception as e:
logger.error(f"保存Redis查询历史记录失败: {e}")
return None
finally:
conn.close()
def get_redis_query_history():
"""获取Redis查询历史记录"""
if not ensure_database():
logger.error("数据库初始化失败")
return []
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
SELECT id, name, description, execution_time, total_keys,
different_count, identical_count, missing_count, created_at
FROM redis_query_history
ORDER BY created_at DESC
''')
rows = cursor.fetchall()
history_list = []
for row in rows:
history_list.append({
'id': row['id'],
'name': row['name'],
'description': row['description'],
'execution_time': row['execution_time'],
'total_keys': row['total_keys'],
'different_count': row['different_count'],
'identical_count': row['identical_count'],
'missing_count': row['missing_count'],
'created_at': row['created_at']
})
return history_list
except Exception as e:
logger.error(f"获取Redis查询历史记录失败: {e}")
return []
finally:
conn.close()
def get_redis_query_history_by_id(history_id):
"""根据ID获取Redis查询历史记录详情"""
if not ensure_database():
logger.error("数据库初始化失败")
return None
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
SELECT * FROM redis_query_history WHERE id = ?
''', (history_id,))
row = cursor.fetchone()
if row:
return {
'id': row['id'],
'name': row['name'],
'description': row['description'],
'cluster1_config': json.loads(row['cluster1_config']),
'cluster2_config': json.loads(row['cluster2_config']),
'query_options': json.loads(row['query_options']),
'query_keys': json.loads(row['query_keys']),
'results_summary': json.loads(row['results_summary']),
'execution_time': row['execution_time'],
'total_keys': row['total_keys'],
'different_count': row['different_count'],
'identical_count': row['identical_count'],
'missing_count': row['missing_count'],
'created_at': row['created_at'],
'raw_results': json.loads(row['raw_results']) if row['raw_results'] else None
}
return None
except Exception as e:
logger.error(f"获取Redis查询历史记录详情失败: {e}")
return None
finally:
conn.close()
def delete_redis_query_history(history_id):
"""删除Redis查询历史记录"""
if not ensure_database():
logger.error("数据库初始化失败")
return False
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('DELETE FROM redis_query_history WHERE id = ?', (history_id,))
conn.commit()
success = cursor.rowcount > 0
if success:
logger.info(f"Redis查询历史记录ID {history_id} 删除成功")
return success
except Exception as e:
logger.error(f"删除Redis查询历史记录失败: {e}")
return False
finally:
conn.close()
def parse_redis_config_from_yaml(yaml_text):
"""从YAML格式文本解析Redis配置"""
try:
config = {}
lines = yaml_text.strip().split('\n')
for line in lines:
line = line.strip()
if ':' in line:
key, value = line.split(':', 1)
key = key.strip()
value = value.strip()
# 移除引号
if value.startswith('"') and value.endswith('"'):
value = value[1:-1]
elif value.startswith("'") and value.endswith("'"):
value = value[1:-1]
config[key] = value
# 转换为Redis集群配置格式
redis_config = {
'name': config.get('clusterName', ''),
'nodes': [],
'password': config.get('clusterPassword', ''),
'socket_timeout': 3,
'socket_connect_timeout': 3,
'max_connections_per_node': 16
}
# 解析地址
cluster_address = config.get('clusterAddress', '')
if cluster_address:
if ':' in cluster_address:
host, port = cluster_address.split(':', 1)
redis_config['nodes'] = [{'host': host, 'port': int(port)}]
else:
redis_config['nodes'] = [{'host': cluster_address, 'port': 6379}]
return redis_config
except Exception as e:
logger.error(f"解析Redis配置失败: {e}")
return None
def save_config_group(name, description, pro_config, test_config, query_config, sharding_config=None):
"""保存配置组"""
if not ensure_database():
logger.error("数据库初始化失败")
return False
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
INSERT OR REPLACE INTO config_groups
(name, description, pro_config, test_config, query_config, sharding_config, updated_at)
VALUES (?, ?, ?, ?, ?, ?, ?)
''', (
name, description,
json.dumps(pro_config),
json.dumps(test_config),
json.dumps(query_config),
json.dumps(sharding_config) if sharding_config else None,
datetime.now().isoformat()
))
conn.commit()
logger.info(f"配置组 '{name}' 保存成功,包含分表配置: {sharding_config is not None}")
return True
except Exception as e:
logger.error(f"保存配置组失败: {e}")
return False
finally:
conn.close()
def get_config_groups():
"""获取所有配置组"""
if not ensure_database():
logger.error("数据库初始化失败")
return []
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
SELECT id, name, description, created_at, updated_at
FROM config_groups
ORDER BY updated_at DESC
''')
rows = cursor.fetchall()
config_groups = []
for row in rows:
config_groups.append({
'id': row['id'],
'name': row['name'],
'description': row['description'],
'created_at': row['created_at'],
'updated_at': row['updated_at']
})
return config_groups
except Exception as e:
logger.error(f"获取配置组失败: {e}")
return []
finally:
conn.close()
def get_config_group_by_id(group_id):
"""根据ID获取配置组详情"""
if not ensure_database():
logger.error("数据库初始化失败")
return None
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
SELECT id, name, description, pro_config, test_config, query_config,
sharding_config, created_at, updated_at
FROM config_groups WHERE id = ?
''', (group_id,))
row = cursor.fetchone()
if row:
config = {
'id': row['id'],
'name': row['name'],
'description': row['description'],
'pro_config': json.loads(row['pro_config']),
'test_config': json.loads(row['test_config']),
'query_config': json.loads(row['query_config']),
'created_at': row['created_at'],
'updated_at': row['updated_at']
}
# 添加分表配置
if row['sharding_config']:
try:
config['sharding_config'] = json.loads(row['sharding_config'])
except (json.JSONDecodeError, TypeError):
config['sharding_config'] = None
else:
config['sharding_config'] = None
return config
return None
except Exception as e:
logger.error(f"获取配置组详情失败: {e}")
return None
finally:
conn.close()
def delete_config_group(group_id):
"""删除配置组"""
if not ensure_database():
logger.error("数据库初始化失败")
return False
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('DELETE FROM config_groups WHERE id = ?', (group_id,))
conn.commit()
success = cursor.rowcount > 0
if success:
logger.info(f"配置组ID {group_id} 删除成功")
return success
except Exception as e:
logger.error(f"删除配置组失败: {e}")
return False
finally:
conn.close()
def save_query_history(name, description, pro_config, test_config, query_config, query_keys,
results_summary, execution_time, total_keys, differences_count, identical_count,
sharding_config=None, query_type='single', raw_results=None, differences_data=None, identical_data=None):
"""保存查询历史记录支持分表查询和查询结果数据返回历史记录ID"""
if not ensure_database():
logger.error("数据库初始化失败")
return None
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
INSERT INTO query_history
(name, description, pro_config, test_config, query_config, query_keys,
results_summary, execution_time, total_keys, differences_count, identical_count,
sharding_config, query_type, raw_results, differences_data, identical_data)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
name, description,
json.dumps(pro_config),
json.dumps(test_config),
json.dumps(query_config),
json.dumps(query_keys),
json.dumps(results_summary),
execution_time,
total_keys,
differences_count,
identical_count,
json.dumps(sharding_config) if sharding_config else None,
query_type,
json.dumps(raw_results) if raw_results else None,
json.dumps(differences_data) if differences_data else None,
json.dumps(identical_data) if identical_data else None
))
# 获取插入记录的ID
history_id = cursor.lastrowid
conn.commit()
logger.info(f"查询历史记录 '{name}' 保存成功,查询类型:{query_type}ID{history_id}")
return history_id
except Exception as e:
logger.error(f"保存查询历史记录失败: {e}")
return None
finally:
conn.close()
def get_query_history():
"""获取所有查询历史记录"""
if not ensure_database():
logger.error("数据库初始化失败")
return []
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
SELECT id, name, description, execution_time, total_keys,
differences_count, identical_count, created_at, query_type
FROM query_history
ORDER BY created_at DESC
''')
rows = cursor.fetchall()
history_list = []
for row in rows:
# 获取列名列表以检查字段是否存在
column_names = [desc[0] for desc in cursor.description]
history_list.append({
'id': row['id'],
'name': row['name'],
'description': row['description'],
'execution_time': row['execution_time'],
'total_keys': row['total_keys'],
'differences_count': row['differences_count'],
'identical_count': row['identical_count'],
'created_at': row['created_at'],
'query_type': row['query_type'] if 'query_type' in column_names else 'single'
})
return history_list
except Exception as e:
logger.error(f"获取查询历史记录失败: {e}")
return []
finally:
conn.close()
def get_query_history_by_id(history_id):
"""根据ID获取查询历史记录详情"""
if not ensure_database():
logger.error("数据库初始化失败")
return None
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('''
SELECT * FROM query_history WHERE id = ?
''', (history_id,))
row = cursor.fetchone()
if row:
# 获取列名列表以检查字段是否存在
column_names = [desc[0] for desc in cursor.description]
return {
'id': row['id'],
'name': row['name'],
'description': row['description'],
'pro_config': json.loads(row['pro_config']),
'test_config': json.loads(row['test_config']),
'query_config': json.loads(row['query_config']),
'query_keys': json.loads(row['query_keys']),
'results_summary': json.loads(row['results_summary']),
'execution_time': row['execution_time'],
'total_keys': row['total_keys'],
'differences_count': row['differences_count'],
'identical_count': row['identical_count'],
'created_at': row['created_at'],
# 处理新字段,保持向后兼容
'sharding_config': json.loads(row['sharding_config']) if 'sharding_config' in column_names and row['sharding_config'] else None,
'query_type': row['query_type'] if 'query_type' in column_names else 'single',
# 添加查询结果数据支持
'raw_results': json.loads(row['raw_results']) if 'raw_results' in column_names and row['raw_results'] else None,
'differences_data': json.loads(row['differences_data']) if 'differences_data' in column_names and row['differences_data'] else None,
'identical_data': json.loads(row['identical_data']) if 'identical_data' in column_names and row['identical_data'] else None
}
return None
except Exception as e:
logger.error(f"获取查询历史记录详情失败: {e}")
return None
finally:
conn.close()
def delete_query_history(history_id):
"""删除查询历史记录"""
if not ensure_database():
logger.error("数据库初始化失败")
return False
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('DELETE FROM query_history WHERE id = ?', (history_id,))
conn.commit()
success = cursor.rowcount > 0
if success:
logger.info(f"查询历史记录ID {history_id} 删除成功")
return success
except Exception as e:
logger.error(f"删除查询历史记录失败: {e}")
return False
finally:
conn.close()

363
modules/data_comparison.py Normal file
View File

@@ -0,0 +1,363 @@
"""
数据比较模块
负责两个数据集之间的比较、JSON处理和差异分析
"""
import json
import logging
logger = logging.getLogger(__name__)
def compare_results(pro_data, test_data, keys, fields_to_compare, exclude_fields, values):
"""比较查询结果,支持复合主键"""
differences = []
field_diff_count = {}
identical_results = [] # 存储相同的结果
def match_composite_key(row, composite_value, keys):
"""检查数据行是否匹配复合主键值"""
if len(keys) == 1:
# 单主键匹配
return getattr(row, keys[0]) == composite_value
else:
# 复合主键匹配
if isinstance(composite_value, str) and ',' in composite_value:
key_values = [v.strip() for v in composite_value.split(',')]
if len(key_values) == len(keys):
return all(str(getattr(row, key)) == key_val for key, key_val in zip(keys, key_values))
# 如果不是复合值,只匹配第一个主键
return getattr(row, keys[0]) == composite_value
for value in values:
# 查找生产表和测试表中该主键值的相关数据
rows_pro = [row for row in pro_data if match_composite_key(row, value, keys)]
rows_test = [row for row in test_data if match_composite_key(row, value, keys)]
for row_pro in rows_pro:
# 在测试表中查找相同主键的行
row_test = next(
(row for row in rows_test if all(getattr(row, key) == getattr(row_pro, key) for key in keys)),
None
)
if row_test:
# 确定要比较的列
columns = fields_to_compare if fields_to_compare else row_pro._fields
columns = [col for col in columns if col not in exclude_fields]
has_difference = False
row_differences = []
identical_fields = {}
for column in columns:
value_pro = getattr(row_pro, column)
value_test = getattr(row_test, column)
# 使用智能比较函数
if not compare_values(value_pro, value_test):
has_difference = True
# 格式化显示值
formatted_pro_value = format_json_for_display(value_pro)
formatted_test_value = format_json_for_display(value_test)
row_differences.append({
'key': {key: getattr(row_pro, key) for key in keys},
'field': column,
'pro_value': formatted_pro_value,
'test_value': formatted_test_value,
'is_json': is_json_field(value_pro) or is_json_field(value_test),
'is_array': is_json_array_field(value_pro) or is_json_array_field(value_test)
})
# 统计字段差异次数
field_diff_count[column] = field_diff_count.get(column, 0) + 1
else:
# 存储相同的字段值
identical_fields[column] = format_json_for_display(value_pro)
if has_difference:
differences.extend(row_differences)
else:
# 如果没有差异,存储到相同结果中
identical_results.append({
'key': {key: getattr(row_pro, key) for key in keys},
'pro_fields': identical_fields,
'test_fields': {col: format_json_for_display(getattr(row_test, col)) for col in columns}
})
else:
# 在测试表中未找到对应行
differences.append({
'key': {key: getattr(row_pro, key) for key in keys},
'message': '在测试表中未找到该行'
})
# 检查测试表中是否有生产表中不存在的行
for row_test in rows_test:
row_pro = next(
(row for row in rows_pro if all(getattr(row, key) == getattr(row_test, key) for key in keys)),
None
)
if not row_pro:
differences.append({
'key': {key: getattr(row_test, key) for key in keys},
'message': '在生产表中未找到该行'
})
return differences, field_diff_count, identical_results
def normalize_json_string(value):
"""标准化JSON字符串用于比较"""
if not isinstance(value, str):
return value
try:
# 尝试解析JSON
json_obj = json.loads(value)
# 如果是数组,需要进行特殊处理
if isinstance(json_obj, list):
# 尝试对数组元素进行标准化排序
normalized_array = normalize_json_array(json_obj)
return json.dumps(normalized_array, sort_keys=True, separators=(',', ':'))
else:
# 普通对象,直接序列化
return json.dumps(json_obj, sort_keys=True, separators=(',', ':'))
except (json.JSONDecodeError, TypeError):
# 如果不是JSON返回原值
return value
def normalize_json_array(json_array):
"""标准化JSON数组处理元素顺序问题"""
try:
normalized_elements = []
for element in json_array:
if isinstance(element, dict):
# 对字典元素进行标准化
normalized_elements.append(json.dumps(element, sort_keys=True, separators=(',', ':')))
elif isinstance(element, str):
# 如果是字符串尝试解析为JSON
try:
parsed_element = json.loads(element)
normalized_elements.append(json.dumps(parsed_element, sort_keys=True, separators=(',', ':')))
except:
normalized_elements.append(element)
else:
normalized_elements.append(element)
# 对标准化后的元素进行排序,确保顺序一致
normalized_elements.sort()
# 重新解析为对象数组
result_array = []
for element in normalized_elements:
if isinstance(element, str):
try:
result_array.append(json.loads(element))
except:
result_array.append(element)
else:
result_array.append(element)
return result_array
except Exception as e:
logger.warning(f"数组标准化失败: {e}")
return json_array
def is_json_array_field(value):
"""检查字段是否为JSON数组格式"""
if not isinstance(value, (str, list)):
return False
try:
if isinstance(value, str):
parsed = json.loads(value)
return isinstance(parsed, list)
elif isinstance(value, list):
# 检查是否为JSON字符串数组
if len(value) > 0 and isinstance(value[0], str):
try:
json.loads(value[0])
return True
except:
return False
return True
except:
return False
def compare_array_values(value1, value2):
"""专门用于比较数组类型的值"""
try:
# 处理字符串表示的数组
if isinstance(value1, str) and isinstance(value2, str):
try:
array1 = json.loads(value1)
array2 = json.loads(value2)
if isinstance(array1, list) and isinstance(array2, list):
return compare_json_arrays(array1, array2)
except:
pass
# 处理Python列表类型
elif isinstance(value1, list) and isinstance(value2, list):
return compare_json_arrays(value1, value2)
# 处理混合情况:一个是字符串数组,一个是列表
elif isinstance(value1, list) and isinstance(value2, str):
try:
array2 = json.loads(value2)
if isinstance(array2, list):
return compare_json_arrays(value1, array2)
except:
pass
elif isinstance(value1, str) and isinstance(value2, list):
try:
array1 = json.loads(value1)
if isinstance(array1, list):
return compare_json_arrays(array1, value2)
except:
pass
return False
except Exception as e:
logger.warning(f"数组比较失败: {e}")
return False
def compare_json_arrays(array1, array2):
"""比较两个JSON数组忽略元素顺序"""
try:
if len(array1) != len(array2):
return False
# 标准化两个数组
normalized_array1 = normalize_json_array(array1.copy())
normalized_array2 = normalize_json_array(array2.copy())
# 将标准化后的数组转换为可比较的格式
comparable1 = json.dumps(normalized_array1, sort_keys=True)
comparable2 = json.dumps(normalized_array2, sort_keys=True)
return comparable1 == comparable2
except Exception as e:
logger.warning(f"JSON数组比较失败: {e}")
return False
def format_json_for_display(value):
"""格式化JSON用于显示"""
if not isinstance(value, str):
return str(value)
try:
# 尝试解析JSON
json_obj = json.loads(value)
# 格式化显示(带缩进)
return json.dumps(json_obj, sort_keys=True, indent=2, ensure_ascii=False)
except (json.JSONDecodeError, TypeError):
# 如果不是JSON返回原值
return str(value)
def is_json_field(value):
"""检查字段是否为JSON格式"""
if not isinstance(value, str):
return False
try:
json.loads(value)
return True
except (json.JSONDecodeError, TypeError):
return False
def compare_values(value1, value2):
"""智能比较两个值支持JSON标准化和数组比较"""
# 首先检查是否为数组类型
if is_json_array_field(value1) or is_json_array_field(value2):
return compare_array_values(value1, value2)
# 如果两个值都是字符串尝试JSON标准化比较
if isinstance(value1, str) and isinstance(value2, str):
normalized_value1 = normalize_json_string(value1)
normalized_value2 = normalize_json_string(value2)
return normalized_value1 == normalized_value2
# 其他情况直接比较
return value1 == value2
def generate_comparison_summary(total_keys, pro_count, test_count, differences, identical_results, field_diff_count):
"""生成比较总结报告"""
# 计算基本统计
different_records = len(set([list(diff['key'].values())[0] for diff in differences if 'field' in diff]))
identical_records = len(identical_results)
missing_in_test = len([diff for diff in differences if diff.get('message') == '在测试表中未找到该行'])
missing_in_pro = len([diff for diff in differences if diff.get('message') == '在生产表中未找到该行'])
# 计算百分比
def safe_percentage(part, total):
return round((part / total * 100), 2) if total > 0 else 0
identical_percentage = safe_percentage(identical_records, total_keys)
different_percentage = safe_percentage(different_records, total_keys)
# 生成总结
summary = {
'overview': {
'total_keys_queried': total_keys,
'pro_records_found': pro_count,
'test_records_found': test_count,
'identical_records': identical_records,
'different_records': different_records,
'missing_in_test': missing_in_test,
'missing_in_pro': missing_in_pro
},
'percentages': {
'data_consistency': identical_percentage,
'data_differences': different_percentage,
'missing_rate': safe_percentage(missing_in_test + missing_in_pro, total_keys)
},
'field_analysis': {
'total_fields_compared': len(field_diff_count) if field_diff_count else 0,
'most_different_fields': sorted(field_diff_count.items(), key=lambda x: x[1], reverse=True)[:5] if field_diff_count else []
},
'data_quality': {
'completeness': safe_percentage(pro_count + test_count, total_keys * 2),
'consistency_score': identical_percentage,
'quality_level': get_quality_level(identical_percentage)
},
'recommendations': generate_recommendations(identical_percentage, missing_in_test, missing_in_pro, field_diff_count)
}
return summary
def get_quality_level(consistency_percentage):
"""根据一致性百分比获取数据质量等级"""
if consistency_percentage >= 95:
return {'level': '优秀', 'color': 'success', 'description': '数据一致性非常高'}
elif consistency_percentage >= 90:
return {'level': '良好', 'color': 'info', 'description': '数据一致性较高'}
elif consistency_percentage >= 80:
return {'level': '一般', 'color': 'warning', 'description': '数据一致性中等,需要关注'}
else:
return {'level': '较差', 'color': 'danger', 'description': '数据一致性较低,需要重点处理'}
def generate_recommendations(consistency_percentage, missing_in_test, missing_in_pro, field_diff_count):
"""生成改进建议"""
recommendations = []
if consistency_percentage < 90:
recommendations.append('建议重点关注数据一致性问题,检查数据同步机制')
if missing_in_test > 0:
recommendations.append(f'测试环境缺失 {missing_in_test} 条记录,建议检查数据迁移过程')
if missing_in_pro > 0:
recommendations.append(f'生产环境缺失 {missing_in_pro} 条记录,建议检查数据完整性')
if field_diff_count:
top_diff_field = max(field_diff_count.items(), key=lambda x: x[1])
recommendations.append(f'字段 "{top_diff_field[0]}" 差异最多({top_diff_field[1]}次),建议优先处理')
if not recommendations:
recommendations.append('数据质量良好,建议继续保持当前的数据管理流程')
return recommendations

228
modules/database.py Normal file
View File

@@ -0,0 +1,228 @@
"""
数据库管理模块
负责SQLite数据库的初始化、连接和表结构管理
"""
import sqlite3
import json
import os
import logging
from datetime import datetime
logger = logging.getLogger(__name__)
DATABASE_PATH = 'config_groups.db'
def init_database():
"""初始化数据库"""
try:
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
# 创建配置组表
cursor.execute('''
CREATE TABLE IF NOT EXISTS config_groups (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE,
description TEXT,
pro_config TEXT NOT NULL,
test_config TEXT NOT NULL,
query_config TEXT NOT NULL,
sharding_config TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
# 创建查询历史表,包含分表配置字段
cursor.execute('''
CREATE TABLE IF NOT EXISTS query_history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
description TEXT,
pro_config TEXT NOT NULL,
test_config TEXT NOT NULL,
query_config TEXT NOT NULL,
query_keys TEXT NOT NULL,
results_summary TEXT NOT NULL,
execution_time REAL NOT NULL,
total_keys INTEGER NOT NULL,
differences_count INTEGER NOT NULL,
identical_count INTEGER NOT NULL,
sharding_config TEXT,
query_type TEXT DEFAULT 'single',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
# 创建分表配置组表
cursor.execute('''
CREATE TABLE IF NOT EXISTS sharding_config_groups (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE,
description TEXT,
pro_config TEXT NOT NULL,
test_config TEXT NOT NULL,
query_config TEXT NOT NULL,
sharding_config TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
# 创建查询日志表
cursor.execute('''
CREATE TABLE IF NOT EXISTS query_logs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
batch_id TEXT NOT NULL,
history_id INTEGER,
timestamp TEXT NOT NULL,
level TEXT NOT NULL,
message TEXT NOT NULL,
query_type TEXT DEFAULT 'single',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (history_id) REFERENCES query_history (id) ON DELETE CASCADE
)
''')
# 创建Redis配置组表
cursor.execute('''
CREATE TABLE IF NOT EXISTS redis_config_groups (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE,
description TEXT,
cluster1_config TEXT NOT NULL,
cluster2_config TEXT NOT NULL,
query_options TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
# 创建Redis查询历史表
cursor.execute('''
CREATE TABLE IF NOT EXISTS redis_query_history (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
description TEXT,
cluster1_config TEXT NOT NULL,
cluster2_config TEXT NOT NULL,
query_options TEXT NOT NULL,
query_keys TEXT NOT NULL,
results_summary TEXT NOT NULL,
execution_time REAL NOT NULL,
total_keys INTEGER NOT NULL,
different_count INTEGER NOT NULL,
identical_count INTEGER NOT NULL,
missing_count INTEGER NOT NULL,
raw_results TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
# 创建索引
cursor.execute('CREATE INDEX IF NOT EXISTS idx_query_logs_batch_id ON query_logs(batch_id)')
cursor.execute('CREATE INDEX IF NOT EXISTS idx_query_logs_history_id ON query_logs(history_id)')
cursor.execute('CREATE INDEX IF NOT EXISTS idx_query_logs_timestamp ON query_logs(timestamp)')
cursor.execute('CREATE INDEX IF NOT EXISTS idx_query_logs_level ON query_logs(level)')
conn.commit()
conn.close()
logger.info("数据库初始化完成")
return True
except Exception as e:
logger.error(f"数据库初始化失败: {e}")
return False
def ensure_database():
"""确保数据库和表存在"""
if not os.path.exists(DATABASE_PATH):
logger.info("数据库文件不存在,正在创建...")
return init_database()
# 检查表是否存在
try:
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name IN ('config_groups', 'query_history', 'sharding_config_groups', 'query_logs', 'redis_config_groups', 'redis_query_history')")
results = cursor.fetchall()
existing_tables = [row[0] for row in results]
required_tables = ['config_groups', 'query_history', 'sharding_config_groups', 'query_logs', 'redis_config_groups', 'redis_query_history']
missing_tables = [table for table in required_tables if table not in existing_tables]
if missing_tables:
logger.info(f"数据库表不完整,缺少表:{missing_tables},正在重新创建...")
return init_database()
# 检查config_groups表是否有sharding_config字段
cursor.execute("PRAGMA table_info(config_groups)")
columns = cursor.fetchall()
column_names = [column[1] for column in columns]
if 'sharding_config' not in column_names:
logger.info("添加sharding_config字段到config_groups表...")
cursor.execute("ALTER TABLE config_groups ADD COLUMN sharding_config TEXT")
conn.commit()
logger.info("sharding_config字段添加成功")
# 检查query_history表是否有分表相关字段
cursor.execute("PRAGMA table_info(query_history)")
history_columns = cursor.fetchall()
history_column_names = [column[1] for column in history_columns]
if 'sharding_config' not in history_column_names:
logger.info("添加sharding_config字段到query_history表...")
cursor.execute("ALTER TABLE query_history ADD COLUMN sharding_config TEXT")
conn.commit()
logger.info("query_history表sharding_config字段添加成功")
if 'query_type' not in history_column_names:
logger.info("添加query_type字段到query_history表...")
cursor.execute("ALTER TABLE query_history ADD COLUMN query_type TEXT DEFAULT 'single'")
conn.commit()
logger.info("query_history表query_type字段添加成功")
# 添加查询结果数据存储字段
if 'raw_results' not in history_column_names:
logger.info("添加raw_results字段到query_history表...")
cursor.execute("ALTER TABLE query_history ADD COLUMN raw_results TEXT")
conn.commit()
logger.info("query_history表raw_results字段添加成功")
if 'differences_data' not in history_column_names:
logger.info("添加differences_data字段到query_history表...")
cursor.execute("ALTER TABLE query_history ADD COLUMN differences_data TEXT")
conn.commit()
logger.info("query_history表differences_data字段添加成功")
if 'identical_data' not in history_column_names:
logger.info("添加identical_data字段到query_history表...")
cursor.execute("ALTER TABLE query_history ADD COLUMN identical_data TEXT")
conn.commit()
logger.info("query_history表identical_data字段添加成功")
# 检查query_logs表是否存在history_id字段
cursor.execute("PRAGMA table_info(query_logs)")
logs_columns = cursor.fetchall()
logs_column_names = [column[1] for column in logs_columns]
if 'history_id' not in logs_column_names:
logger.info("添加history_id字段到query_logs表...")
cursor.execute("ALTER TABLE query_logs ADD COLUMN history_id INTEGER")
# 创建外键索引
cursor.execute('CREATE INDEX IF NOT EXISTS idx_query_logs_history_id ON query_logs(history_id)')
conn.commit()
logger.info("query_logs表history_id字段添加成功")
conn.close()
return True
except Exception as e:
logger.error(f"检查数据库表失败: {e}")
return init_database()
def get_db_connection():
"""获取数据库连接"""
conn = sqlite3.connect(DATABASE_PATH)
conn.row_factory = sqlite3.Row
return conn

234
modules/query_engine.py Normal file
View File

@@ -0,0 +1,234 @@
"""
数据查询模块
负责Cassandra数据的查询执行支持单表、分表和多主键查询
"""
import time
import logging
from .sharding import ShardingCalculator
logger = logging.getLogger(__name__)
def execute_query(session, table, keys, fields, values, exclude_fields=None):
"""执行查询,支持单主键和复合主键"""
try:
# 参数验证
if not keys or len(keys) == 0:
logger.error("Keys参数为空无法构建查询")
return []
if not values or len(values) == 0:
logger.error("Values参数为空无法构建查询")
return []
# 构建查询条件
if len(keys) == 1:
# 单主键查询(保持原有逻辑)
quoted_values = [f"'{value}'" for value in values]
query_conditions = f"{keys[0]} IN ({', '.join(quoted_values)})"
else:
# 复合主键查询
conditions = []
for value in values:
# 检查value是否包含复合主键分隔符
if isinstance(value, str) and ',' in value:
# 解析复合主键值
key_values = [v.strip() for v in value.split(',')]
if len(key_values) == len(keys):
# 构建单个复合主键条件: (key1='val1' AND key2='val2')
key_conditions = []
for i, (key, val) in enumerate(zip(keys, key_values)):
key_conditions.append(f"{key} = '{val}'")
conditions.append(f"({' AND '.join(key_conditions)})")
else:
logger.warning(f"复合主键值 '{value}' 的字段数量({len(key_values)})与主键字段数量({len(keys)})不匹配")
# 将其作为第一个主键的值处理
conditions.append(f"{keys[0]} = '{value}'")
else:
# 单值,作为第一个主键的值处理
conditions.append(f"{keys[0]} = '{value}'")
if conditions:
query_conditions = ' OR '.join(conditions)
else:
logger.error("无法构建有效的查询条件")
return []
# 确定要查询的字段
if fields:
fields_str = ", ".join(fields)
else:
fields_str = "*"
query_sql = f"SELECT {fields_str} FROM {table} WHERE {query_conditions};"
# 记录查询SQL日志
logger.info(f"执行查询SQL: {query_sql}")
if len(keys) > 1:
logger.info(f"复合主键查询参数: 表={table}, 主键字段={keys}, 字段={fields_str}, Key数量={len(values)}")
else:
logger.info(f"单主键查询参数: 表={table}, 主键字段={keys[0]}, 字段={fields_str}, Key数量={len(values)}")
# 执行查询
start_time = time.time()
result = session.execute(query_sql)
execution_time = time.time() - start_time
result_list = list(result) if result else []
logger.info(f"查询完成: 执行时间={execution_time:.3f}秒, 返回记录数={len(result_list)}")
return result_list
except Exception as e:
logger.error(f"查询执行失败: SQL={query_sql if 'query_sql' in locals() else 'N/A'}, 错误={str(e)}")
return []
def execute_sharding_query(session, shard_mapping, keys, fields, exclude_fields=None):
"""
执行分表查询
:param session: Cassandra会话
:param shard_mapping: 分表映射 {table_name: [keys]}
:param keys: 主键字段名列表
:param fields: 要查询的字段列表
:param exclude_fields: 要排除的字段列表
:return: (查询结果列表, 查询到的表列表, 查询失败的表列表)
"""
all_results = []
queried_tables = []
error_tables = []
logger.info(f"开始执行分表查询,涉及 {len(shard_mapping)} 张分表")
total_start_time = time.time()
for table_name, table_keys in shard_mapping.items():
try:
logger.info(f"查询分表 {table_name},包含 {len(table_keys)} 个key: {table_keys}")
# 为每个分表执行查询
table_results = execute_query(session, table_name, keys, fields, table_keys, exclude_fields)
all_results.extend(table_results)
queried_tables.append(table_name)
logger.info(f"分表 {table_name} 查询成功,返回 {len(table_results)} 条记录")
except Exception as e:
logger.error(f"分表 {table_name} 查询失败: {e}")
error_tables.append(table_name)
total_execution_time = time.time() - total_start_time
logger.info(f"分表查询总计完成: 执行时间={total_execution_time:.3f}秒, 成功表数={len(queried_tables)}, 失败表数={len(error_tables)}, 总记录数={len(all_results)}")
return all_results, queried_tables, error_tables
def execute_mixed_query(pro_session, test_session, pro_config, test_config, keys, fields_to_compare, values, exclude_fields, sharding_config):
"""
执行混合查询(生产环境分表,测试环境可能单表或分表)
"""
results = {
'pro_data': [],
'test_data': [],
'sharding_info': {
'calculation_stats': {}
}
}
# 处理生产环境查询
if sharding_config.get('use_sharding_for_pro', False):
# 获取生产环境分表配置参数,优先使用专用参数,否则使用通用参数
pro_interval = sharding_config.get('pro_interval_seconds') or sharding_config.get('interval_seconds', 604800)
pro_table_count = sharding_config.get('pro_table_count') or sharding_config.get('table_count', 14)
# 记录生产环境分表配置信息
logger.info(f"=== 生产环境分表配置 ===")
logger.info(f"启用分表查询: True")
logger.info(f"时间间隔: {pro_interval}秒 ({pro_interval//86400}天)")
logger.info(f"分表数量: {pro_table_count}")
logger.info(f"基础表名: {pro_config['table']}")
pro_calculator = ShardingCalculator(
interval_seconds=pro_interval,
table_count=pro_table_count
)
pro_shard_mapping, pro_failed_keys, pro_calc_stats = pro_calculator.get_all_shard_tables_for_keys(
pro_config['table'], values
)
logger.info(f"生产环境分表映射结果: 涉及{len(pro_shard_mapping)}张分表, 失败Key数量: {len(pro_failed_keys)}")
pro_data, pro_queried_tables, pro_error_tables = execute_sharding_query(
pro_session, pro_shard_mapping, keys, fields_to_compare, exclude_fields
)
results['pro_data'] = pro_data
results['sharding_info']['pro_shards'] = {
'enabled': True,
'interval_seconds': sharding_config.get('pro_interval_seconds', 604800),
'table_count': sharding_config.get('pro_table_count', 14),
'queried_tables': pro_queried_tables,
'error_tables': pro_error_tables,
'failed_keys': pro_failed_keys
}
results['sharding_info']['calculation_stats'].update(pro_calc_stats)
else:
# 生产环境单表查询
logger.info(f"=== 生产环境单表配置 ===")
logger.info(f"启用分表查询: False")
logger.info(f"表名: {pro_config['table']}")
pro_data = execute_query(pro_session, pro_config['table'], keys, fields_to_compare, values, exclude_fields)
results['pro_data'] = pro_data
results['sharding_info']['pro_shards'] = {
'enabled': False,
'queried_tables': [pro_config['table']]
}
# 处理测试环境查询
if sharding_config.get('use_sharding_for_test', False):
# 获取测试环境分表配置参数,优先使用专用参数,否则使用通用参数
test_interval = sharding_config.get('test_interval_seconds') or sharding_config.get('interval_seconds', 604800)
test_table_count = sharding_config.get('test_table_count') or sharding_config.get('table_count', 14)
# 记录测试环境分表配置信息
logger.info(f"=== 测试环境分表配置 ===")
logger.info(f"启用分表查询: True")
logger.info(f"时间间隔: {test_interval}秒 ({test_interval//86400}天)")
logger.info(f"分表数量: {test_table_count}")
logger.info(f"基础表名: {test_config['table']}")
test_calculator = ShardingCalculator(
interval_seconds=test_interval,
table_count=test_table_count
)
test_shard_mapping, test_failed_keys, test_calc_stats = test_calculator.get_all_shard_tables_for_keys(
test_config['table'], values
)
logger.info(f"测试环境分表映射结果: 涉及{len(test_shard_mapping)}张分表, 失败Key数量: {len(test_failed_keys)}")
test_data, test_queried_tables, test_error_tables = execute_sharding_query(
test_session, test_shard_mapping, keys, fields_to_compare, exclude_fields
)
results['test_data'] = test_data
results['sharding_info']['test_shards'] = {
'enabled': True,
'interval_seconds': test_interval,
'table_count': test_table_count,
'queried_tables': test_queried_tables,
'error_tables': test_error_tables,
'failed_keys': test_failed_keys
}
# 合并计算统计信息
if not results['sharding_info']['calculation_stats']:
results['sharding_info']['calculation_stats'] = test_calc_stats
else:
# 测试环境单表查询
logger.info(f"=== 测试环境单表配置 ===")
logger.info(f"启用分表查询: False")
logger.info(f"表名: {test_config['table']}")
test_data = execute_query(test_session, test_config['table'], keys, fields_to_compare, values, exclude_fields)
results['test_data'] = test_data
results['sharding_info']['test_shards'] = {
'enabled': False,
'queried_tables': [test_config['table']]
}
return results

272
modules/query_logger.py Normal file
View File

@@ -0,0 +1,272 @@
"""
查询日志管理模块
负责查询日志的收集、存储和检索
"""
import sqlite3
import logging
from datetime import datetime, timedelta
from .database import DATABASE_PATH
logger = logging.getLogger(__name__)
class QueryLogCollector:
def __init__(self, max_logs=1000, db_path=None):
self.logs = [] # 内存中的日志缓存
self.max_logs = max_logs
self.current_batch_id = None
self.batch_counter = 0
self.current_query_type = 'single'
self.current_history_id = None # 当前关联的历史记录ID
self.db_path = db_path or DATABASE_PATH
def start_new_batch(self, query_type='single'):
"""开始新的查询批次"""
self.batch_counter += 1
self.current_batch_id = f"batch_{self.batch_counter}_{datetime.now().strftime('%H%M%S')}"
self.current_query_type = query_type
self.current_history_id = None # 重置历史记录ID
# 添加批次开始标记
self.add_log('INFO', f"=== 开始{query_type}查询批次 (ID: {self.current_batch_id}) ===", force_batch_id=self.current_batch_id)
return self.current_batch_id
def set_history_id(self, history_id):
"""设置当前批次关联的历史记录ID"""
self.current_history_id = history_id
if self.current_batch_id and history_id:
self.add_log('INFO', f"关联历史记录ID: {history_id}", force_batch_id=self.current_batch_id)
# 更新当前批次的所有日志记录的history_id
self._update_batch_history_id(self.current_batch_id, history_id)
def _update_batch_history_id(self, batch_id, history_id):
"""更新批次中所有日志的history_id"""
try:
conn = sqlite3.connect(self.db_path, timeout=30)
cursor = conn.cursor()
cursor.execute('''
UPDATE query_logs
SET history_id = ?
WHERE batch_id = ?
''', (history_id, batch_id))
conn.commit()
conn.close()
logger.info(f"已更新批次 {batch_id} 的历史记录关联到 {history_id}")
except Exception as e:
print(f"Warning: Failed to update batch history_id: {e}")
def end_current_batch(self):
"""结束当前查询批次"""
if self.current_batch_id:
self.add_log('INFO', f"=== 查询批次完成 (ID: {self.current_batch_id}) ===", force_batch_id=self.current_batch_id)
self.current_batch_id = None
self.current_history_id = None
def add_log(self, level, message, force_batch_id=None, force_query_type=None, force_history_id=None):
"""添加日志到内存和数据库"""
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3]
batch_id = force_batch_id or self.current_batch_id
query_type = force_query_type or self.current_query_type
history_id = force_history_id or self.current_history_id
log_entry = {
'timestamp': timestamp,
'level': level,
'message': message,
'batch_id': batch_id,
'query_type': query_type,
'history_id': history_id
}
# 添加到内存缓存
self.logs.append(log_entry)
if len(self.logs) > self.max_logs:
self.logs.pop(0)
# 保存到数据库
self._save_log_to_db(log_entry)
def _save_log_to_db(self, log_entry):
"""将日志保存到数据库"""
try:
conn = sqlite3.connect(self.db_path, timeout=30)
cursor = conn.cursor()
cursor.execute('''
INSERT INTO query_logs (batch_id, history_id, timestamp, level, message, query_type)
VALUES (?, ?, ?, ?, ?, ?)
''', (
log_entry['batch_id'],
log_entry['history_id'],
log_entry['timestamp'],
log_entry['level'],
log_entry['message'],
log_entry['query_type']
))
conn.commit()
conn.close()
except Exception as e:
# 数据库写入失败时记录到控制台,但不影响程序运行
print(f"Warning: Failed to save log to database: {e}")
def get_logs(self, limit=None, from_db=True):
"""获取日志,支持从数据库或内存获取"""
if from_db:
return self._get_logs_from_db(limit)
else:
# 从内存获取
if limit:
return self.logs[-limit:]
return self.logs
def _get_logs_from_db(self, limit=None):
"""从数据库获取日志"""
try:
conn = sqlite3.connect(self.db_path, timeout=30)
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
query = '''
SELECT batch_id, history_id, timestamp, level, message, query_type
FROM query_logs
ORDER BY id DESC
'''
if limit:
query += f' LIMIT {limit}'
cursor.execute(query)
rows = cursor.fetchall()
# 转换为字典格式并反转顺序(最新的在前)
logs = []
for row in reversed(rows):
logs.append({
'batch_id': row['batch_id'],
'history_id': row['history_id'],
'timestamp': row['timestamp'],
'level': row['level'],
'message': row['message'],
'query_type': row['query_type']
})
conn.close()
return logs
except Exception as e:
print(f"Warning: Failed to get logs from database: {e}")
# 如果数据库读取失败,返回内存中的日志
return self.get_logs(limit, from_db=False)
def _get_total_logs_count(self):
"""获取数据库中的日志总数"""
try:
conn = sqlite3.connect(self.db_path, timeout=30)
cursor = conn.cursor()
cursor.execute('SELECT COUNT(*) FROM query_logs')
count = cursor.fetchone()[0]
conn.close()
return count
except Exception as e:
print(f"Warning: Failed to get logs count from database: {e}")
return len(self.logs)
def get_logs_by_history_id(self, history_id):
"""根据历史记录ID获取相关日志"""
try:
conn = sqlite3.connect(self.db_path, timeout=30)
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute('''
SELECT batch_id, history_id, timestamp, level, message, query_type
FROM query_logs
WHERE history_id = ?
ORDER BY id ASC
''', (history_id,))
rows = cursor.fetchall()
logs = []
for row in rows:
logs.append({
'batch_id': row['batch_id'],
'history_id': row['history_id'],
'timestamp': row['timestamp'],
'level': row['level'],
'message': row['message'],
'query_type': row['query_type']
})
conn.close()
return logs
except Exception as e:
print(f"Warning: Failed to get logs by history_id: {e}")
return []
def get_logs_grouped_by_batch(self, limit=None, from_db=True):
"""按批次分组获取日志"""
logs = self.get_logs(limit, from_db)
grouped_logs = {}
batch_order = []
for log in logs:
batch_id = log.get('batch_id', 'unknown')
if batch_id not in grouped_logs:
grouped_logs[batch_id] = []
batch_order.append(batch_id)
grouped_logs[batch_id].append(log)
# 返回按时间顺序排列的批次
return [(batch_id, grouped_logs[batch_id]) for batch_id in batch_order]
def clear_logs(self, clear_db=True):
"""清空日志"""
# 清空内存
self.logs.clear()
self.current_batch_id = None
self.batch_counter = 0
# 清空数据库
if clear_db:
try:
conn = sqlite3.connect(self.db_path, timeout=30)
cursor = conn.cursor()
cursor.execute('DELETE FROM query_logs')
conn.commit()
conn.close()
except Exception as e:
print(f"Warning: Failed to clear logs from database: {e}")
def cleanup_old_logs(self, days_to_keep=30):
"""清理旧日志,保留指定天数的日志"""
try:
conn = sqlite3.connect(self.db_path, timeout=30)
cursor = conn.cursor()
# 删除超过指定天数的日志
cutoff_date = datetime.now() - timedelta(days=days_to_keep)
cursor.execute('''
DELETE FROM query_logs
WHERE created_at < ?
''', (cutoff_date.strftime('%Y-%m-%d %H:%M:%S'),))
deleted_count = cursor.rowcount
conn.commit()
conn.close()
logger.info(f"清理了 {deleted_count} 条超过 {days_to_keep} 天的旧日志")
return deleted_count
except Exception as e:
logger.error(f"清理旧日志失败: {e}")
return 0
# 自定义日志处理器
class CollectorHandler(logging.Handler):
def __init__(self, collector):
super().__init__()
self.collector = collector
def emit(self, record):
self.collector.add_log(record.levelname, record.getMessage())

249
modules/redis_client.py Normal file
View File

@@ -0,0 +1,249 @@
"""
Redis连接管理模块
负责Redis集群的连接、错误处理和性能追踪
"""
import time
import logging
import redis
from redis.cluster import RedisCluster, ClusterNode, key_slot
from redis.exceptions import RedisError, ConnectionError
logger = logging.getLogger(__name__)
class RedisPerformanceTracker:
"""Redis操作性能统计追踪器"""
def __init__(self):
self.connection_times = {} # 连接耗时
self.query_times = {} # 查询耗时
self.comparison_time = 0 # 比对耗时
self.scan_time = 0 # scan操作耗时
self.connection_status = {} # 连接状态
self.start_time = time.time()
def record_connection(self, cluster_name, start_time, end_time, success, error_msg=None):
"""记录连接信息"""
self.connection_times[cluster_name] = end_time - start_time
self.connection_status[cluster_name] = {
'success': success,
'error_msg': error_msg,
'connect_time': end_time - start_time
}
def record_query(self, operation_name, duration):
"""记录查询操作耗时"""
self.query_times[operation_name] = duration
def record_scan_time(self, duration):
"""记录scan操作耗时"""
self.scan_time = duration
def record_comparison_time(self, duration):
"""记录比对耗时"""
self.comparison_time = duration
def get_total_time(self):
"""获取总耗时"""
return time.time() - self.start_time
def generate_report(self):
"""生成性能报告"""
total_time = self.get_total_time()
report = {
'total_time': total_time,
'connections': self.connection_status,
'operations': {
'scan_time': self.scan_time,
'comparison_time': self.comparison_time,
'queries': self.query_times
}
}
return report
def create_redis_client(cluster_config, cluster_name="Redis集群", performance_tracker=None):
"""
创建Redis客户端自动检测单节点或集群模式
Args:
cluster_config: Redis配置
cluster_name: 集群名称用于日志
performance_tracker: 性能追踪器
Returns:
Redis客户端实例或None
"""
start_time = time.time()
try:
# 获取节点配置
nodes = cluster_config.get('nodes', [])
if not nodes:
raise RedisError("未配置Redis节点")
# 通用连接参数
common_params = {
'password': cluster_config.get('password'),
'socket_timeout': cluster_config.get('socket_timeout', 3),
'socket_connect_timeout': cluster_config.get('socket_connect_timeout', 3),
'decode_responses': False, # 保持原始字节数据
'retry_on_timeout': True
}
logger.info(f"正在连接{cluster_name}...")
logger.info(f"节点配置: {[(node['host'], node['port']) for node in nodes]}")
# 首先尝试单节点模式连接第一个节点
first_node = nodes[0]
try:
logger.info(f"尝试单节点模式连接: {first_node['host']}:{first_node['port']}")
single_client = redis.Redis(
host=first_node['host'],
port=first_node['port'],
**common_params
)
# 测试连接
single_client.ping()
# 检查是否启用了集群模式
try:
info = single_client.info()
cluster_enabled = info.get('cluster_enabled', 0)
if cluster_enabled == 1:
# 这是一个集群节点,关闭单节点连接,使用集群模式
logger.info("检测到集群模式已启用,切换到集群客户端")
single_client.close()
return _create_cluster_client(cluster_config, cluster_name, performance_tracker, start_time, common_params)
else:
# 单节点模式工作正常
end_time = time.time()
connection_time = end_time - start_time
if performance_tracker:
performance_tracker.record_connection(cluster_name, start_time, end_time, True)
logger.info(f"{cluster_name}连接成功(单节点模式),耗时 {connection_time:.3f}")
return single_client
except Exception as info_error:
# 如果获取info失败但ping成功仍然使用单节点模式
logger.warning(f"无法获取集群信息,继续使用单节点模式: {info_error}")
end_time = time.time()
connection_time = end_time - start_time
if performance_tracker:
performance_tracker.record_connection(cluster_name, start_time, end_time, True)
logger.info(f"{cluster_name}连接成功(单节点模式),耗时 {connection_time:.3f}")
return single_client
except Exception as single_error:
logger.warning(f"单节点模式连接失败: {single_error}")
logger.info("尝试集群模式连接...")
# 单节点模式失败,尝试集群模式
return _create_cluster_client(cluster_config, cluster_name, performance_tracker, start_time, common_params)
except Exception as e:
end_time = time.time()
connection_time = end_time - start_time
error_msg = f"连接失败: {str(e)}"
if performance_tracker:
performance_tracker.record_connection(cluster_name, start_time, end_time, False, error_msg)
logger.error(f"{cluster_name}{error_msg},耗时 {connection_time:.3f}")
return None
def _create_cluster_client(cluster_config, cluster_name, performance_tracker, start_time, common_params):
"""创建集群客户端"""
try:
# 构建集群节点列表
startup_nodes = []
for node in cluster_config.get('nodes', []):
startup_nodes.append(ClusterNode(node['host'], node['port']))
# 创建Redis集群客户端
cluster_client = RedisCluster(
startup_nodes=startup_nodes,
max_connections_per_node=cluster_config.get('max_connections_per_node', 16),
skip_full_coverage_check=True, # 跳过全覆盖检查,允许部分节点不可用
**common_params
)
# 测试集群连接
cluster_client.ping()
end_time = time.time()
connection_time = end_time - start_time
if performance_tracker:
performance_tracker.record_connection(cluster_name, start_time, end_time, True)
logger.info(f"{cluster_name}连接成功(集群模式),耗时 {connection_time:.3f}")
return cluster_client
except Exception as cluster_error:
end_time = time.time()
connection_time = end_time - start_time
error_msg = f"集群模式连接失败: {str(cluster_error)}"
if performance_tracker:
performance_tracker.record_connection(cluster_name, start_time, end_time, False, error_msg)
logger.error(f"{cluster_name}{error_msg},耗时 {connection_time:.3f}")
return None
def test_redis_connection(cluster_config, cluster_name="Redis集群"):
"""
测试Redis连接
Args:
cluster_config: Redis集群配置
cluster_name: 集群名称
Returns:
dict: 连接测试结果
"""
result = {
'success': False,
'error': None,
'connection_time': 0,
'cluster_info': None
}
start_time = time.time()
client = None
try:
client = create_redis_client(cluster_config, cluster_name)
if client:
# 获取集群信息
info = client.info()
cluster_info = {
'redis_version': info.get('redis_version', 'Unknown'),
'connected_clients': info.get('connected_clients', 0),
'used_memory_human': info.get('used_memory_human', 'Unknown'),
'keyspace_hits': info.get('keyspace_hits', 0),
'keyspace_misses': info.get('keyspace_misses', 0)
}
result['success'] = True
result['cluster_info'] = cluster_info
else:
result['error'] = "连接创建失败"
except Exception as e:
result['error'] = str(e)
finally:
result['connection_time'] = time.time() - start_time
if client:
try:
client.close()
except:
pass
return result

355
modules/redis_query.py Normal file
View File

@@ -0,0 +1,355 @@
"""
Redis查询和数据比较模块
负责Redis数据的查询、随机key获取和数据比较
"""
import time
import logging
import random
from redis.cluster import key_slot
from redis.exceptions import RedisError
from .redis_client import RedisPerformanceTracker
logger = logging.getLogger(__name__)
def get_random_keys_from_redis(redis_client, count=100, pattern="*", performance_tracker=None):
"""
从Redis集群中获取随机keys
Args:
redis_client: Redis客户端
count: 要获取的key数量
pattern: key匹配模式默认为 "*"
performance_tracker: 性能追踪器
Returns:
list: 随机key列表
"""
start_time = time.time()
keys = set()
logger.info(f"开始扫描获取随机keys目标数量: {count},模式: {pattern}")
try:
# 使用scan_iter获取keys
scan_count = max(count * 2, 1000) # 扫描更多key以确保随机性
for key in redis_client.scan_iter(match=pattern, count=scan_count):
keys.add(key)
if len(keys) >= count * 3: # 获取更多key以便随机选择
break
# 如果获取的key数量超过需要的数量随机选择
if len(keys) > count:
keys = random.sample(list(keys), count)
else:
keys = list(keys)
end_time = time.time()
scan_duration = end_time - start_time
if performance_tracker:
performance_tracker.record_scan_time(scan_duration)
logger.info(f"扫描获取 {len(keys)} 个随机keys耗时 {scan_duration:.3f}")
return keys
except RedisError as e:
end_time = time.time()
scan_duration = end_time - start_time
if performance_tracker:
performance_tracker.record_scan_time(scan_duration)
logger.error(f"获取随机keys失败: {e},耗时 {scan_duration:.3f}")
return []
def get_redis_values_by_keys(redis_client, keys, cluster_name="Redis集群", performance_tracker=None):
"""
批量查询Redis中指定keys的值自动适配单节点和集群模式
Args:
redis_client: Redis客户端
keys: 要查询的key列表
cluster_name: 集群名称用于日志
performance_tracker: 性能追踪器
Returns:
list: 对应keys的值列表如果key不存在则为None
"""
start_time = time.time()
result = [None] * len(keys)
logger.info(f"开始从{cluster_name}批量查询 {len(keys)} 个keys")
try:
# 检查是否是集群模式
is_cluster = hasattr(redis_client, 'cluster_nodes')
if is_cluster:
# 集群模式按slot分组keys以优化查询性能
slot_groups = {}
for idx, key in enumerate(keys):
slot = key_slot(key)
slot_groups.setdefault(slot, []).append((idx, key))
logger.info(f"集群模式keys分布在 {len(slot_groups)} 个slot中")
# 分组批量查询
for group in slot_groups.values():
indices, slot_keys = zip(*group)
values = redis_client.mget(slot_keys)
for i, v in zip(indices, values):
result[i] = v
else:
# 单节点模式:直接批量查询
logger.info(f"单节点模式:直接批量查询")
result = redis_client.mget(keys)
end_time = time.time()
query_duration = end_time - start_time
if performance_tracker:
performance_tracker.record_query(f"{cluster_name}_batch_query", query_duration)
# 统计成功获取的key数量
successful_count = sum(1 for v in result if v is not None)
logger.info(f"{cluster_name}查询完成,成功获取 {successful_count}/{len(keys)} 个值,耗时 {query_duration:.3f}")
return result
except Exception as e:
end_time = time.time()
query_duration = end_time - start_time
if performance_tracker:
performance_tracker.record_query(f"{cluster_name}_batch_query_error", query_duration)
logger.error(f"{cluster_name}批量查询失败: {e},耗时 {query_duration:.3f}")
return result
def compare_redis_data(client1, client2, keys, cluster1_name="生产集群", cluster2_name="测试集群", performance_tracker=None):
"""
比较两个Redis集群中指定keys的数据
Args:
client1: 第一个Redis客户端生产
client2: 第二个Redis客户端测试
keys: 要比较的key列表
cluster1_name: 第一个集群名称
cluster2_name: 第二个集群名称
performance_tracker: 性能追踪器
Returns:
dict: 比较结果,包含统计信息和差异详情
"""
comparison_start_time = time.time()
logger.info(f"开始比较 {cluster1_name}{cluster2_name} 的数据")
# 获取两个集群的数据
values1 = get_redis_values_by_keys(client1, keys, cluster1_name, performance_tracker)
if values1 is None:
return {'error': f'{cluster1_name}获取数据失败'}
values2 = get_redis_values_by_keys(client2, keys, cluster2_name, performance_tracker)
if values2 is None:
return {'error': f'{cluster2_name}获取数据失败'}
# 开始数据比对
compare_start = time.time()
# 初始化统计数据
stats = {
'total_keys': len(keys),
'identical_count': 0,
'different_count': 0,
'missing_in_cluster1': 0,
'missing_in_cluster2': 0,
'both_missing': 0
}
# 详细结果列表
identical_results = []
different_results = []
missing_results = []
# 逐个比较
for i, key in enumerate(keys):
val1 = values1[i]
val2 = values2[i]
# 将bytes转换为字符串用于显示如果是bytes类型
display_val1 = val1.decode('utf-8') if isinstance(val1, bytes) else val1
display_val2 = val2.decode('utf-8') if isinstance(val2, bytes) else val2
if val1 is None and val2 is None:
# 两个集群都没有这个key
stats['both_missing'] += 1
missing_results.append({
'key': key.decode('utf-8') if isinstance(key, bytes) else key,
'status': 'both_missing',
'message': '两个集群都不存在该key'
})
elif val1 is None:
# 只有第一个集群没有
stats['missing_in_cluster1'] += 1
missing_results.append({
'key': key.decode('utf-8') if isinstance(key, bytes) else key,
'status': 'missing_in_cluster1',
'cluster1_value': None,
'cluster2_value': display_val2,
'message': f'{cluster1_name}中不存在'
})
elif val2 is None:
# 只有第二个集群没有
stats['missing_in_cluster2'] += 1
missing_results.append({
'key': key.decode('utf-8') if isinstance(key, bytes) else key,
'status': 'missing_in_cluster2',
'cluster1_value': display_val1,
'cluster2_value': None,
'message': f'{cluster2_name}中不存在'
})
elif val1 == val2:
# 值相同
stats['identical_count'] += 1
identical_results.append({
'key': key.decode('utf-8') if isinstance(key, bytes) else key,
'value': display_val1
})
else:
# 值不同
stats['different_count'] += 1
different_results.append({
'key': key.decode('utf-8') if isinstance(key, bytes) else key,
'cluster1_value': display_val1,
'cluster2_value': display_val2,
'message': '值不同'
})
compare_end = time.time()
comparison_duration = compare_end - compare_start
total_duration = compare_end - comparison_start_time
if performance_tracker:
performance_tracker.record_comparison_time(comparison_duration)
# 计算百分比
def safe_percentage(part, total):
return round((part / total * 100), 2) if total > 0 else 0
stats['identical_percentage'] = safe_percentage(stats['identical_count'], stats['total_keys'])
stats['different_percentage'] = safe_percentage(stats['different_count'], stats['total_keys'])
stats['missing_percentage'] = safe_percentage(
stats['missing_in_cluster1'] + stats['missing_in_cluster2'] + stats['both_missing'],
stats['total_keys']
)
result = {
'success': True,
'stats': stats,
'identical_results': identical_results,
'different_results': different_results,
'missing_results': missing_results,
'performance': {
'comparison_time': comparison_duration,
'total_time': total_duration
},
'clusters': {
'cluster1_name': cluster1_name,
'cluster2_name': cluster2_name
}
}
logger.info(f"数据比对完成,耗时 {comparison_duration:.3f}")
logger.info(f"比对统计: 总计{stats['total_keys']}个key相同{stats['identical_count']}个,不同{stats['different_count']}个,缺失{stats['missing_in_cluster1'] + stats['missing_in_cluster2'] + stats['both_missing']}")
return result
def execute_redis_comparison(config1, config2, query_options):
"""
执行Redis数据比较的主要函数
Args:
config1: 第一个Redis集群配置
config2: 第二个Redis集群配置
query_options: 查询选项,包含查询模式和参数
Returns:
dict: 完整的比较结果
"""
from .redis_client import create_redis_client
# 创建性能追踪器
performance_tracker = RedisPerformanceTracker()
cluster1_name = config1.get('name', '生产集群')
cluster2_name = config2.get('name', '测试集群')
logger.info(f"开始执行Redis数据比较: {cluster1_name} vs {cluster2_name}")
# 创建连接
client1 = create_redis_client(config1, cluster1_name, performance_tracker)
client2 = create_redis_client(config2, cluster2_name, performance_tracker)
if not client1:
return {'error': f'{cluster1_name}连接失败'}
if not client2:
return {'error': f'{cluster2_name}连接失败'}
try:
# 获取要比较的keys
keys = []
query_mode = query_options.get('mode', 'random')
if query_mode == 'random':
# 随机获取keys
count = query_options.get('count', 100)
pattern = query_options.get('pattern', '*')
source_cluster = query_options.get('source_cluster', 'cluster2') # 默认从第二个集群获取
source_client = client2 if source_cluster == 'cluster2' else client1
source_name = cluster2_name if source_cluster == 'cluster2' else cluster1_name
logger.info(f"{source_name}随机获取 {count} 个keys")
keys = get_random_keys_from_redis(source_client, count, pattern, performance_tracker)
elif query_mode == 'specified':
# 指定keys
keys = query_options.get('keys', [])
# 如果keys是字符串需要转换为bytesRedis通常使用bytes
keys = [k.encode('utf-8') if isinstance(k, str) else k for k in keys]
if not keys:
return {'error': '未获取到任何keys进行比较'}
logger.info(f"准备比较 {len(keys)} 个keys")
# 执行比较
comparison_result = compare_redis_data(
client1, client2, keys,
cluster1_name, cluster2_name,
performance_tracker
)
# 添加性能报告
comparison_result['performance_report'] = performance_tracker.generate_report()
comparison_result['query_options'] = query_options
return comparison_result
except Exception as e:
logger.error(f"Redis数据比较执行失败: {e}")
return {'error': f'执行失败: {str(e)}'}
finally:
# 关闭连接
try:
if client1:
client1.close()
if client2:
client2.close()
except:
pass

115
modules/sharding.py Normal file
View File

@@ -0,0 +1,115 @@
"""
分表计算模块
负责TWCS时间分表的计算和映射
"""
import re
import logging
logger = logging.getLogger(__name__)
class ShardingCalculator:
"""分表计算器基于TWCS策略"""
def __init__(self, interval_seconds=604800, table_count=14):
"""
初始化分表计算器
:param interval_seconds: 时间间隔(秒)默认604800(7天)
:param table_count: 分表数量默认14
"""
self.interval_seconds = interval_seconds
self.table_count = table_count
def extract_timestamp_from_key(self, key):
"""
从Key中提取时间戳
新规则:优先提取最后一个下划线后的数字,如果没有下划线则提取最后连续的数字部分
"""
if not key:
return None
key_str = str(key)
# 方法1如果包含下划线尝试提取最后一个下划线后的部分
if '_' in key_str:
parts = key_str.split('_')
last_part = parts[-1]
# 检查最后一部分是否为纯数字
if last_part.isdigit():
timestamp = int(last_part)
logger.info(f"Key '{key}' 通过下划线分割提取到时间戳: {timestamp}")
return timestamp
# 方法2使用正则表达式找到所有数字序列取最后一个较长的
number_sequences = re.findall(r'\d+', key_str)
if not number_sequences:
logger.warning(f"Key '{key}' 中没有找到数字字符")
return None
# 如果有多个数字序列,优先选择最长的,如果长度相同则选择最后一个
longest_sequence = max(number_sequences, key=len)
# 如果最长的有多个,选择最后一个最长的
max_length = len(longest_sequence)
last_longest = None
for seq in number_sequences:
if len(seq) == max_length:
last_longest = seq
try:
timestamp = int(last_longest)
logger.info(f"Key '{key}' 通过数字序列提取到时间戳: {timestamp} (从序列 {number_sequences} 中选择)")
return timestamp
except ValueError:
logger.error(f"Key '{key}' 时间戳转换失败: {last_longest}")
return None
def calculate_shard_index(self, timestamp):
"""
计算分表索引
公式timestamp // interval_seconds % table_count
"""
if timestamp is None:
return None
return int(timestamp) // self.interval_seconds % self.table_count
def get_shard_table_name(self, base_table_name, key):
"""
根据Key获取对应的分表名称
"""
timestamp = self.extract_timestamp_from_key(key)
if timestamp is None:
return None
shard_index = self.calculate_shard_index(timestamp)
return f"{base_table_name}_{shard_index}"
def get_all_shard_tables_for_keys(self, base_table_name, keys):
"""
为一批Keys计算所有需要查询的分表
返回: {shard_table_name: [keys_for_this_shard], ...}
"""
shard_mapping = {}
failed_keys = []
calculation_stats = {
'total_keys': len(keys),
'successful_extractions': 0,
'failed_extractions': 0,
'unique_shards': 0
}
for key in keys:
shard_table = self.get_shard_table_name(base_table_name, key)
if shard_table:
if shard_table not in shard_mapping:
shard_mapping[shard_table] = []
shard_mapping[shard_table].append(key)
calculation_stats['successful_extractions'] += 1
else:
failed_keys.append(key)
calculation_stats['failed_extractions'] += 1
calculation_stats['unique_shards'] = len(shard_mapping)
return shard_mapping, failed_keys, calculation_stats