672 lines
28 KiB
Python
672 lines
28 KiB
Python
"""
|
||
Redis查询引擎模块
|
||
=================
|
||
|
||
本模块是Redis数据比对的核心引擎,提供高级的Redis数据查询和比较功能。
|
||
|
||
核心功能:
|
||
1. 多模式查询:随机采样和指定Key两种查询模式
|
||
2. 全类型支持:支持所有Redis数据类型的查询和比较
|
||
3. 智能比较:针对不同数据类型的专门比较算法
|
||
4. 性能监控:详细的查询时间和性能统计
|
||
5. 错误容错:单个Key查询失败不影响整体结果
|
||
|
||
查询模式:
|
||
- 随机采样:从源集群随机获取指定数量的Key进行比对
|
||
- 指定Key:对用户提供的Key列表进行精确比对
|
||
- 模式匹配:支持通配符模式的Key筛选
|
||
|
||
支持的数据类型:
|
||
- String:字符串类型,自动检测JSON格式
|
||
- Hash:哈希表,字段级别的深度比较
|
||
- List:列表,保持元素顺序的精确比较
|
||
- Set:集合,自动排序后的内容比较
|
||
- ZSet:有序集合,包含分数的完整比较
|
||
- Stream:消息流,消息级别的详细比较
|
||
|
||
比较算法:
|
||
- JSON智能比较:自动检测和比较JSON格式数据
|
||
- 类型一致性检查:确保两个集群中数据类型一致
|
||
- 内容深度比较:递归比较复杂数据结构
|
||
- 性能优化:大数据集的高效比较算法
|
||
|
||
统计分析:
|
||
- 一致性统计:相同、不同、缺失Key的详细统计
|
||
- 类型分布:各种数据类型的分布统计
|
||
- 性能指标:查询时间、连接时间等性能数据
|
||
- 错误分析:查询失败的详细错误统计
|
||
|
||
作者:BigDataTool项目组
|
||
更新时间:2024年8月
|
||
"""
|
||
|
||
import time
|
||
import logging
|
||
import random
|
||
from redis.cluster import key_slot
|
||
from redis.exceptions import RedisError
|
||
from .redis_client import RedisPerformanceTracker
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
# 导入查询日志收集器
|
||
try:
|
||
from app import query_log_collector
|
||
except ImportError:
|
||
# 如果导入失败,创建一个空的日志收集器
|
||
class DummyQueryLogCollector:
|
||
def start_new_batch(self, query_type):
|
||
return None
|
||
def end_current_batch(self):
|
||
pass
|
||
def set_history_id(self, history_id):
|
||
pass
|
||
def add_log(self, level, message):
|
||
pass
|
||
|
||
query_log_collector = DummyQueryLogCollector()
|
||
|
||
def _get_redis_command_by_type(redis_type):
|
||
"""根据Redis数据类型返回对应的查询命令"""
|
||
command_map = {
|
||
'string': 'GET',
|
||
'hash': 'HGETALL',
|
||
'list': 'LRANGE',
|
||
'set': 'SMEMBERS',
|
||
'zset': 'ZRANGE',
|
||
'stream': 'XRANGE'
|
||
}
|
||
return command_map.get(redis_type, 'TYPE')
|
||
|
||
def _get_data_summary(key_info):
|
||
"""获取数据内容的概要信息"""
|
||
if not key_info['exists']:
|
||
return "不存在"
|
||
|
||
key_type = key_info['type']
|
||
value = key_info['value']
|
||
|
||
try:
|
||
if key_type == 'string':
|
||
if isinstance(value, str):
|
||
if len(value) > 50:
|
||
return f"字符串({len(value)}字符): {value[:47]}..."
|
||
else:
|
||
return f"字符串: {value}"
|
||
else:
|
||
return f"字符串: {str(value)[:50]}..."
|
||
|
||
elif key_type == 'hash':
|
||
if isinstance(value, dict):
|
||
field_count = len(value)
|
||
sample_fields = list(value.keys())[:3]
|
||
fields_str = ", ".join(sample_fields)
|
||
if field_count > 3:
|
||
fields_str += "..."
|
||
return f"哈希({field_count}个字段): {fields_str}"
|
||
else:
|
||
return f"哈希: {str(value)[:50]}..."
|
||
|
||
elif key_type == 'list':
|
||
if isinstance(value, list):
|
||
list_len = len(value)
|
||
if list_len > 0:
|
||
first_item = str(value[0])[:20] if value[0] else "空"
|
||
return f"列表({list_len}个元素): [{first_item}...]"
|
||
else:
|
||
return "列表(空)"
|
||
else:
|
||
return f"列表: {str(value)[:50]}..."
|
||
|
||
elif key_type == 'set':
|
||
if isinstance(value, (set, list)):
|
||
set_len = len(value)
|
||
if set_len > 0:
|
||
first_item = str(list(value)[0])[:20] if value else "空"
|
||
return f"集合({set_len}个元素): {{{first_item}...}}"
|
||
else:
|
||
return "集合(空)"
|
||
else:
|
||
return f"集合: {str(value)[:50]}..."
|
||
|
||
elif key_type == 'zset':
|
||
if isinstance(value, list):
|
||
zset_len = len(value)
|
||
if zset_len > 0:
|
||
first_item = f"{value[0][0]}:{value[0][1]}" if value[0] else "空"
|
||
return f"有序集合({zset_len}个元素): {{{first_item}...}}"
|
||
else:
|
||
return "有序集合(空)"
|
||
else:
|
||
return f"有序集合: {str(value)[:50]}..."
|
||
|
||
elif key_type == 'stream':
|
||
if isinstance(value, list):
|
||
stream_len = len(value)
|
||
return f"流({stream_len}条消息)"
|
||
else:
|
||
return f"流: {str(value)[:50]}..."
|
||
|
||
else:
|
||
return f"未知类型: {str(value)[:50]}..."
|
||
|
||
except Exception as e:
|
||
return f"解析错误: {str(e)[:30]}..."
|
||
|
||
def get_random_keys_from_redis(redis_client, count=100, pattern="*", performance_tracker=None):
|
||
"""
|
||
从Redis集群中获取随机keys
|
||
|
||
Args:
|
||
redis_client: Redis客户端
|
||
count: 要获取的key数量
|
||
pattern: key匹配模式,默认为 "*"
|
||
performance_tracker: 性能追踪器
|
||
|
||
Returns:
|
||
list: 随机key列表
|
||
"""
|
||
start_time = time.time()
|
||
keys = set()
|
||
|
||
logger.info(f"开始扫描获取随机keys,目标数量: {count},模式: {pattern}")
|
||
query_log_collector.add_log('INFO', f"🔍 开始扫描Key,目标数量: {count},匹配模式: '{pattern}'")
|
||
|
||
try:
|
||
# 使用scan_iter获取keys
|
||
scan_count = max(count * 2, 1000) # 扫描更多key以确保随机性
|
||
query_log_collector.add_log('INFO', f"📡 执行SCAN命令,扫描批次大小: {scan_count}")
|
||
|
||
scan_iterations = 0
|
||
for key in redis_client.scan_iter(match=pattern, count=scan_count):
|
||
keys.add(key)
|
||
scan_iterations += 1
|
||
|
||
# 每扫描1000个key记录一次进度
|
||
if scan_iterations % 1000 == 0:
|
||
query_log_collector.add_log('INFO', f"📊 扫描进度: 已发现 {len(keys)} 个匹配的Key")
|
||
|
||
if len(keys) >= count * 3: # 获取更多key以便随机选择
|
||
break
|
||
|
||
total_found = len(keys)
|
||
query_log_collector.add_log('INFO', f"🎯 扫描完成,共发现 {total_found} 个匹配的Key")
|
||
|
||
# 如果获取的key数量超过需要的数量,随机选择
|
||
if len(keys) > count:
|
||
keys = random.sample(list(keys), count)
|
||
query_log_collector.add_log('INFO', f"🎲 从 {total_found} 个Key中随机选择 {count} 个")
|
||
else:
|
||
keys = list(keys)
|
||
if total_found < count:
|
||
query_log_collector.add_log('WARNING', f"⚠️ 实际找到的Key数量({total_found})少于目标数量({count})")
|
||
|
||
# 记录选中的Key样本(前10个)
|
||
key_sample = keys[:10] if len(keys) > 10 else keys
|
||
key_list_str = ", ".join([f"'{k}'" for k in key_sample])
|
||
if len(keys) > 10:
|
||
key_list_str += f" ... (共{len(keys)}个)"
|
||
query_log_collector.add_log('INFO', f"📋 选中的Key样本: [{key_list_str}]")
|
||
|
||
end_time = time.time()
|
||
scan_duration = end_time - start_time
|
||
|
||
if performance_tracker:
|
||
performance_tracker.record_scan_time(scan_duration)
|
||
|
||
logger.info(f"扫描获取 {len(keys)} 个随机keys,耗时 {scan_duration:.3f} 秒")
|
||
query_log_collector.add_log('INFO', f"✅ Key扫描完成,最终获取 {len(keys)} 个keys,总耗时 {scan_duration:.3f} 秒")
|
||
return keys
|
||
|
||
except RedisError as e:
|
||
end_time = time.time()
|
||
scan_duration = end_time - start_time
|
||
|
||
if performance_tracker:
|
||
performance_tracker.record_scan_time(scan_duration)
|
||
|
||
logger.error(f"获取随机keys失败: {e},耗时 {scan_duration:.3f} 秒")
|
||
query_log_collector.add_log('ERROR', f"获取随机keys失败: {e},耗时 {scan_duration:.3f} 秒")
|
||
return []
|
||
|
||
def get_redis_values_by_keys(redis_client, keys, cluster_name="Redis集群", performance_tracker=None):
|
||
"""
|
||
批量查询Redis中指定keys的值,支持所有Redis数据类型(String、Hash、List、Set、ZSet等)
|
||
|
||
Args:
|
||
redis_client: Redis客户端
|
||
keys: 要查询的key列表
|
||
cluster_name: 集群名称用于日志
|
||
performance_tracker: 性能追踪器
|
||
|
||
Returns:
|
||
list: 对应keys的值信息字典列表,包含类型、值和显示格式
|
||
"""
|
||
from .redis_types import get_redis_value_with_type
|
||
|
||
start_time = time.time()
|
||
result = []
|
||
|
||
logger.info(f"开始从{cluster_name}批量查询 {len(keys)} 个keys(支持所有数据类型)")
|
||
query_log_collector.add_log('INFO', f"📊 开始从{cluster_name}批量查询 {len(keys)} 个keys(支持所有数据类型)")
|
||
|
||
# 记录要查询的Key列表(前10个,避免日志过长)
|
||
key_sample = keys[:10] if len(keys) > 10 else keys
|
||
key_list_str = ", ".join([f"'{k}'" for k in key_sample])
|
||
if len(keys) > 10:
|
||
key_list_str += f" ... (共{len(keys)}个)"
|
||
query_log_collector.add_log('INFO', f"🔍 查询Key列表: [{key_list_str}]")
|
||
|
||
try:
|
||
# 逐个查询每个key,支持所有Redis数据类型
|
||
redis_commands_used = {} # 记录使用的Redis命令
|
||
|
||
for i, key in enumerate(keys):
|
||
key_start_time = time.time()
|
||
key_info = get_redis_value_with_type(redis_client, key)
|
||
key_duration = time.time() - key_start_time
|
||
|
||
result.append(key_info)
|
||
|
||
# 记录每个key的查询详情
|
||
if key_info['exists']:
|
||
key_type = key_info['type']
|
||
# 根据类型确定使用的Redis命令
|
||
redis_cmd = _get_redis_command_by_type(key_type)
|
||
redis_commands_used[redis_cmd] = redis_commands_used.get(redis_cmd, 0) + 1
|
||
|
||
# 获取数据内容概要
|
||
data_summary = _get_data_summary(key_info)
|
||
|
||
query_log_collector.add_log('INFO',
|
||
f"✅ Key '{key}' | 类型: {key_type} | 命令: {redis_cmd} | 数据: {data_summary} | 耗时: {key_duration:.3f}s")
|
||
else:
|
||
query_log_collector.add_log('WARNING',
|
||
f"❌ Key '{key}' | 状态: 不存在 | 耗时: {key_duration:.3f}s")
|
||
|
||
end_time = time.time()
|
||
query_duration = end_time - start_time
|
||
|
||
if performance_tracker:
|
||
performance_tracker.record_query(f"{cluster_name}_typed_batch_query", query_duration)
|
||
|
||
# 统计成功获取的key数量和类型分布
|
||
successful_count = sum(1 for r in result if r['exists'])
|
||
type_stats = {}
|
||
for r in result:
|
||
if r['exists']:
|
||
key_type = r['type']
|
||
type_stats[key_type] = type_stats.get(key_type, 0) + 1
|
||
|
||
# 记录Redis命令使用统计
|
||
cmd_stats = ", ".join([f"{cmd}: {count}" for cmd, count in redis_commands_used.items()]) if redis_commands_used else "无"
|
||
type_info = ", ".join([f"{t}: {c}" for t, c in type_stats.items()]) if type_stats else "无"
|
||
|
||
query_log_collector.add_log('INFO', f"🎯 Redis命令统计: [{cmd_stats}]")
|
||
query_log_collector.add_log('INFO', f"📈 从{cluster_name}查询完成,成功获取 {successful_count}/{len(keys)} 个值,数据类型分布: [{type_info}],总耗时 {query_duration:.3f} 秒")
|
||
|
||
return result
|
||
|
||
except Exception as e:
|
||
end_time = time.time()
|
||
query_duration = end_time - start_time
|
||
|
||
if performance_tracker:
|
||
performance_tracker.record_query(f"{cluster_name}_typed_batch_query_error", query_duration)
|
||
|
||
logger.error(f"从{cluster_name}批量查询失败: {e},耗时 {query_duration:.3f} 秒")
|
||
query_log_collector.add_log('ERROR', f"从{cluster_name}批量查询失败: {e},耗时 {query_duration:.3f} 秒")
|
||
# 返回错误占位符
|
||
return [{'type': 'error', 'value': None, 'display_value': f'<error: {e}>', 'exists': False} for _ in keys]
|
||
|
||
def compare_redis_data(client1, client2, keys, cluster1_name="生产集群", cluster2_name="测试集群", performance_tracker=None):
|
||
"""
|
||
比较两个Redis集群中指定keys的数据,支持所有Redis数据类型
|
||
|
||
Args:
|
||
client1: 第一个Redis客户端(生产)
|
||
client2: 第二个Redis客户端(测试)
|
||
keys: 要比较的key列表
|
||
cluster1_name: 第一个集群名称
|
||
cluster2_name: 第二个集群名称
|
||
performance_tracker: 性能追踪器
|
||
|
||
Returns:
|
||
dict: 比较结果,包含统计信息和差异详情
|
||
"""
|
||
from .redis_types import compare_redis_values
|
||
|
||
comparison_start_time = time.time()
|
||
|
||
logger.info(f"开始比较 {cluster1_name} 和 {cluster2_name} 的数据(支持所有Redis数据类型)")
|
||
query_log_collector.add_log('INFO', f"🔄 开始比较 {cluster1_name} 和 {cluster2_name} 的数据(支持所有Redis数据类型)")
|
||
query_log_collector.add_log('INFO', f"📊 比较范围: {len(keys)} 个Key")
|
||
|
||
# 获取两个集群的数据
|
||
query_log_collector.add_log('INFO', f"📥 第一步: 从{cluster1_name}获取数据")
|
||
values1 = get_redis_values_by_keys(client1, keys, cluster1_name, performance_tracker)
|
||
if not values1:
|
||
error_msg = f'从{cluster1_name}获取数据失败'
|
||
query_log_collector.add_log('ERROR', f"❌ {error_msg}")
|
||
return {'error': error_msg}
|
||
|
||
query_log_collector.add_log('INFO', f"📥 第二步: 从{cluster2_name}获取数据")
|
||
values2 = get_redis_values_by_keys(client2, keys, cluster2_name, performance_tracker)
|
||
if not values2:
|
||
error_msg = f'从{cluster2_name}获取数据失败'
|
||
query_log_collector.add_log('ERROR', f"❌ {error_msg}")
|
||
return {'error': error_msg}
|
||
|
||
# 开始数据比对
|
||
compare_start = time.time()
|
||
query_log_collector.add_log('INFO', f"🔍 第三步: 开始逐个比较Key的数据内容")
|
||
|
||
# 初始化统计数据
|
||
stats = {
|
||
'total_keys': len(keys),
|
||
'identical_count': 0,
|
||
'different_count': 0,
|
||
'missing_in_cluster1': 0,
|
||
'missing_in_cluster2': 0,
|
||
'both_missing': 0
|
||
}
|
||
|
||
# 详细结果列表
|
||
identical_results = []
|
||
different_results = []
|
||
missing_results = []
|
||
|
||
# 逐个比较
|
||
comparison_details = [] # 记录比较详情
|
||
|
||
for i, key in enumerate(keys):
|
||
key_str = key.decode('utf-8') if isinstance(key, bytes) else key
|
||
value1_info = values1[i]
|
||
value2_info = values2[i]
|
||
|
||
# 使用redis_types模块的比较函数
|
||
comparison_result = compare_redis_values(value1_info, value2_info)
|
||
|
||
# 记录比较详情
|
||
comparison_detail = {
|
||
'key': key_str,
|
||
'cluster1_exists': value1_info['exists'],
|
||
'cluster2_exists': value2_info['exists'],
|
||
'cluster1_type': value1_info.get('type'),
|
||
'cluster2_type': value2_info.get('type'),
|
||
'status': comparison_result['status']
|
||
}
|
||
comparison_details.append(comparison_detail)
|
||
|
||
if comparison_result['status'] == 'both_missing':
|
||
stats['both_missing'] += 1
|
||
missing_results.append({
|
||
'key': key_str,
|
||
'status': 'both_missing',
|
||
'message': comparison_result['message']
|
||
})
|
||
query_log_collector.add_log('WARNING', f"⚠️ Key '{key_str}': 两个集群都不存在")
|
||
|
||
elif comparison_result['status'] == 'missing_in_cluster1':
|
||
stats['missing_in_cluster1'] += 1
|
||
missing_results.append({
|
||
'key': key_str,
|
||
'status': 'missing_in_cluster1',
|
||
'cluster1_value': None,
|
||
'cluster2_value': value2_info['display_value'],
|
||
'cluster2_type': value2_info['type'],
|
||
'message': comparison_result['message']
|
||
})
|
||
query_log_collector.add_log('WARNING', f"❌ Key '{key_str}': 仅在{cluster2_name}存在 (类型: {value2_info['type']})")
|
||
|
||
elif comparison_result['status'] == 'missing_in_cluster2':
|
||
stats['missing_in_cluster2'] += 1
|
||
missing_results.append({
|
||
'key': key_str,
|
||
'status': 'missing_in_cluster2',
|
||
'cluster1_value': value1_info['display_value'],
|
||
'cluster1_type': value1_info['type'],
|
||
'cluster2_value': None,
|
||
'message': comparison_result['message']
|
||
})
|
||
query_log_collector.add_log('WARNING', f"❌ Key '{key_str}': 仅在{cluster1_name}存在 (类型: {value1_info['type']})")
|
||
elif comparison_result['status'] == 'identical':
|
||
stats['identical_count'] += 1
|
||
identical_results.append({
|
||
'key': key_str,
|
||
'value': value1_info['display_value'],
|
||
'type': value1_info['type']
|
||
})
|
||
query_log_collector.add_log('INFO', f"✅ Key '{key_str}': 数据一致 (类型: {value1_info['type']})")
|
||
|
||
else: # different
|
||
stats['different_count'] += 1
|
||
different_results.append({
|
||
'key': key_str,
|
||
'cluster1_value': value1_info['display_value'],
|
||
'cluster1_type': value1_info['type'],
|
||
'cluster2_value': value2_info['display_value'],
|
||
'cluster2_type': value2_info['type'],
|
||
'message': comparison_result['message']
|
||
})
|
||
# 记录差异详情
|
||
type_info = f"{value1_info['type']} vs {value2_info['type']}" if value1_info['type'] != value2_info['type'] else value1_info['type']
|
||
query_log_collector.add_log('WARNING', f"🔄 Key '{key_str}': 数据不一致 (类型: {type_info}) - {comparison_result['message']}")
|
||
|
||
# 每处理100个key记录一次进度
|
||
if (i + 1) % 100 == 0:
|
||
progress = f"{i + 1}/{len(keys)}"
|
||
query_log_collector.add_log('INFO', f"📊 比较进度: {progress} ({((i + 1) / len(keys) * 100):.1f}%)")
|
||
|
||
compare_end = time.time()
|
||
comparison_duration = compare_end - compare_start
|
||
total_duration = compare_end - comparison_start_time
|
||
|
||
if performance_tracker:
|
||
performance_tracker.record_comparison_time(comparison_duration)
|
||
|
||
# 计算百分比
|
||
def safe_percentage(part, total):
|
||
return round((part / total * 100), 2) if total > 0 else 0
|
||
|
||
stats['identical_percentage'] = safe_percentage(stats['identical_count'], stats['total_keys'])
|
||
stats['different_percentage'] = safe_percentage(stats['different_count'], stats['total_keys'])
|
||
stats['missing_percentage'] = safe_percentage(
|
||
stats['missing_in_cluster1'] + stats['missing_in_cluster2'] + stats['both_missing'],
|
||
stats['total_keys']
|
||
)
|
||
|
||
result = {
|
||
'success': True,
|
||
'stats': stats,
|
||
'identical_results': identical_results,
|
||
'different_results': different_results,
|
||
'missing_results': missing_results,
|
||
'performance': {
|
||
'comparison_time': comparison_duration,
|
||
'total_time': total_duration
|
||
},
|
||
'clusters': {
|
||
'cluster1_name': cluster1_name,
|
||
'cluster2_name': cluster2_name
|
||
}
|
||
}
|
||
|
||
# 记录详细的比较总结
|
||
query_log_collector.add_log('INFO', f"🎯 数据比对完成,纯比较耗时 {comparison_duration:.3f} 秒,总耗时 {total_duration:.3f} 秒")
|
||
|
||
# 记录统计信息
|
||
query_log_collector.add_log('INFO', f"📊 比对统计总览:")
|
||
query_log_collector.add_log('INFO', f" • 总Key数量: {stats['total_keys']}")
|
||
query_log_collector.add_log('INFO', f" • ✅ 数据一致: {stats['identical_count']} ({stats['identical_percentage']}%)")
|
||
query_log_collector.add_log('INFO', f" • 🔄 数据不同: {stats['different_count']} ({stats['different_percentage']}%)")
|
||
query_log_collector.add_log('INFO', f" • ❌ 仅{cluster1_name}存在: {stats['missing_in_cluster2']}")
|
||
query_log_collector.add_log('INFO', f" • ❌ 仅{cluster2_name}存在: {stats['missing_in_cluster1']}")
|
||
query_log_collector.add_log('INFO', f" • ⚠️ 两集群都不存在: {stats['both_missing']}")
|
||
|
||
# 记录性能信息
|
||
if performance_tracker:
|
||
query_log_collector.add_log('INFO', f"⚡ 性能统计: 平均每Key比较耗时 {(comparison_duration / len(keys) * 1000):.2f}ms")
|
||
|
||
# 记录所有Key的详细信息
|
||
query_log_collector.add_log('INFO', f"📋 全部Key详细信息:")
|
||
|
||
# 统计类型分布
|
||
type_distribution = {}
|
||
for detail in comparison_details:
|
||
key_str = detail['key']
|
||
cluster1_type = detail.get('cluster1_type', 'N/A')
|
||
cluster2_type = detail.get('cluster2_type', 'N/A')
|
||
status = detail.get('status', 'unknown')
|
||
|
||
# 统计类型分布
|
||
if cluster1_type != 'N/A':
|
||
type_distribution[cluster1_type] = type_distribution.get(cluster1_type, 0) + 1
|
||
elif cluster2_type != 'N/A':
|
||
type_distribution[cluster2_type] = type_distribution.get(cluster2_type, 0) + 1
|
||
|
||
# 记录每个Key的详细信息
|
||
if status == 'identical':
|
||
query_log_collector.add_log('INFO', f" ✅ {key_str} → 类型: {cluster1_type}, 状态: 数据一致")
|
||
elif status == 'different':
|
||
type_info = cluster1_type if cluster1_type == cluster2_type else f"{cluster1_name}:{cluster1_type} vs {cluster2_name}:{cluster2_type}"
|
||
query_log_collector.add_log('INFO', f" 🔄 {key_str} → 类型: {type_info}, 状态: 数据不同")
|
||
elif status == 'missing_in_cluster1':
|
||
query_log_collector.add_log('INFO', f" ❌ {key_str} → 类型: {cluster2_type}, 状态: 仅在{cluster2_name}存在")
|
||
elif status == 'missing_in_cluster2':
|
||
query_log_collector.add_log('INFO', f" ❌ {key_str} → 类型: {cluster1_type}, 状态: 仅在{cluster1_name}存在")
|
||
elif status == 'both_missing':
|
||
query_log_collector.add_log('INFO', f" ⚠️ {key_str} → 类型: N/A, 状态: 两集群都不存在")
|
||
|
||
# 记录类型分布统计
|
||
if type_distribution:
|
||
query_log_collector.add_log('INFO', f"📊 数据类型分布统计:")
|
||
for data_type, count in sorted(type_distribution.items()):
|
||
percentage = (count / len(keys)) * 100
|
||
query_log_collector.add_log('INFO', f" • {data_type}: {count} 个 ({percentage:.1f}%)")
|
||
|
||
# 记录Key列表摘要
|
||
key_summary = [detail['key'] for detail in comparison_details[:10]] # 显示前10个key
|
||
key_list_str = ', '.join(key_summary)
|
||
if len(comparison_details) > 10:
|
||
key_list_str += f" ... (共{len(comparison_details)}个Key)"
|
||
query_log_collector.add_log('INFO', f"📝 Key列表摘要: [{key_list_str}]")
|
||
|
||
logger.info(f"数据比对完成,耗时 {comparison_duration:.3f} 秒")
|
||
logger.info(f"比对统计: 总计{stats['total_keys']}个key,相同{stats['identical_count']}个,不同{stats['different_count']}个,缺失{stats['missing_in_cluster1'] + stats['missing_in_cluster2'] + stats['both_missing']}个")
|
||
|
||
return result
|
||
|
||
def execute_redis_comparison(config1, config2, query_options):
|
||
"""
|
||
执行Redis数据比较的主要函数
|
||
|
||
Args:
|
||
config1: 第一个Redis集群配置
|
||
config2: 第二个Redis集群配置
|
||
query_options: 查询选项,包含查询模式和参数
|
||
|
||
Returns:
|
||
dict: 完整的比较结果
|
||
"""
|
||
from .redis_client import create_redis_client
|
||
|
||
# 创建性能追踪器
|
||
performance_tracker = RedisPerformanceTracker()
|
||
|
||
cluster1_name = config1.get('name', '生产集群')
|
||
cluster2_name = config2.get('name', '测试集群')
|
||
|
||
logger.info(f"开始执行Redis数据比较: {cluster1_name} vs {cluster2_name}")
|
||
|
||
# 开始新的查询批次,使用redis查询类型
|
||
batch_id = query_log_collector.start_new_batch('redis')
|
||
query_log_collector.add_log('INFO', f"🚀 开始执行Redis数据比较: {cluster1_name} vs {cluster2_name}")
|
||
query_log_collector.add_log('INFO', f"📋 查询批次ID: {batch_id}")
|
||
|
||
# 创建连接
|
||
client1 = create_redis_client(config1, cluster1_name, performance_tracker)
|
||
client2 = create_redis_client(config2, cluster2_name, performance_tracker)
|
||
|
||
if not client1:
|
||
error_msg = f'{cluster1_name}连接失败'
|
||
query_log_collector.add_log('ERROR', error_msg)
|
||
return {'error': error_msg}
|
||
|
||
if not client2:
|
||
error_msg = f'{cluster2_name}连接失败'
|
||
query_log_collector.add_log('ERROR', error_msg)
|
||
return {'error': error_msg}
|
||
|
||
try:
|
||
# 获取要比较的keys
|
||
keys = []
|
||
query_mode = query_options.get('mode', 'random')
|
||
|
||
if query_mode == 'random':
|
||
# 随机获取keys
|
||
count = query_options.get('count', 100)
|
||
pattern = query_options.get('pattern', '*')
|
||
source_cluster = query_options.get('source_cluster', 'cluster2') # 默认从第二个集群获取
|
||
|
||
source_client = client2 if source_cluster == 'cluster2' else client1
|
||
source_name = cluster2_name if source_cluster == 'cluster2' else cluster1_name
|
||
|
||
logger.info(f"从{source_name}随机获取 {count} 个keys")
|
||
query_log_collector.add_log('INFO', f"从{source_name}随机获取 {count} 个keys")
|
||
keys = get_random_keys_from_redis(source_client, count, pattern, performance_tracker)
|
||
|
||
elif query_mode == 'specified':
|
||
# 指定keys
|
||
keys = query_options.get('keys', [])
|
||
# 如果keys是字符串,需要转换为bytes(Redis通常使用bytes)
|
||
keys = [k.encode('utf-8') if isinstance(k, str) else k for k in keys]
|
||
query_log_collector.add_log('INFO', f"使用指定的 {len(keys)} 个keys进行比较")
|
||
|
||
if not keys:
|
||
error_msg = '未获取到任何keys进行比较'
|
||
query_log_collector.add_log('ERROR', error_msg)
|
||
return {'error': error_msg}
|
||
|
||
logger.info(f"准备比较 {len(keys)} 个keys")
|
||
query_log_collector.add_log('INFO', f"准备比较 {len(keys)} 个keys")
|
||
|
||
# 执行比较
|
||
comparison_result = compare_redis_data(
|
||
client1, client2, keys,
|
||
cluster1_name, cluster2_name,
|
||
performance_tracker
|
||
)
|
||
|
||
# 添加性能报告
|
||
comparison_result['performance_report'] = performance_tracker.generate_report()
|
||
comparison_result['query_options'] = query_options
|
||
comparison_result['batch_id'] = batch_id # 添加批次ID到结果中
|
||
|
||
# 记录最终结果
|
||
if comparison_result.get('success'):
|
||
query_log_collector.add_log('INFO', f"🎉 Redis数据比较执行成功完成")
|
||
|
||
# 结束当前批次
|
||
query_log_collector.end_current_batch()
|
||
|
||
return comparison_result
|
||
|
||
except Exception as e:
|
||
logger.error(f"Redis数据比较执行失败: {e}")
|
||
query_log_collector.add_log('ERROR', f"💥 Redis数据比较执行失败: {e}")
|
||
|
||
# 结束当前批次
|
||
query_log_collector.end_current_batch()
|
||
|
||
return {'error': f'执行失败: {str(e)}', 'batch_id': batch_id}
|
||
|
||
finally:
|
||
# 关闭连接
|
||
try:
|
||
if client1:
|
||
client1.close()
|
||
if client2:
|
||
client2.close()
|
||
except:
|
||
pass |